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ABSTRACT
This paper models stochastic order flow generations in a
FX market. Like other financial asset markets, in order for
a trader to have perspective on price, he must take other
traders’ perspectives into consideration. In our model,
prices are formed through the interactions between hetero-
geneous price perspectives and the order flow from macro
economy. The auctions are continuous. So we do not have
truistic point of time to define liquidation value. Also ap-
plying demand and supply on their asynchronous transac-
tions is difficult. We use alternative benchmark value and
arrival intensities of order flow. We derive determinants of
volume and volatility.
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1 Introduction

Order flow is transaction volume that is signed. Lyons [1]
Chapter 10 summaries significant influences of order flow
on foreign exchange rates. He does not, however, present
a model of order flow generation itself. Our theme is the
structure of such order flow generations. This structure also
determines volatility. Using our approach, we sort out de-
terminants’ effects on volume and volatility. It is possible
to explain intra-day variability of volume / volatility corre-
lation.

Inter-bank FX transactions have two channels. One is
through brokers, and the other without broker. We model
the first type of the auction channel. Price quotes go
through brokers. Dealers are not obliged to keep quoting
both prices. Only when they want, they submit limit or-
ders to a broker. We assume the environment of the market
as follows. There is a broker. The auction is continuous
and double sided. Buyers and sellers compete in their own
sides. Among submitted limit orders, the broker keeps an-
nouncing the best buying and selling prices. Spot foreign
exchange is the commodity to trade. The market is geo-
graphically local. It has trading hours. There are many
dealers. Let’s take a representative dealer. He is risk neu-
tral. His objective is daily profit maximization. He is al-
lowed to have open position up to one transaction unit. De-

liveries and settlements are scheduled for another day. So
no interest cost incurs in order to have intra-day open po-
sition. He trades with retail customers any time they want
during business hours. Their arrivals are asynchronous and
random.

Analyses of continuous auction in financial mar-
ket need extra approach. Transactions take place asyn-
chronously. To handle this, we use arrival intensity of buy-
ers and sellers, instead of demand and supply. The arrival
intensity is expected number of arrivals per unit time. Use
of the arrival intensity is in line with Garman [2] and Ami-
hud, Yakov and Mendelson [3]. The next issue poses non
trivial question. At a microstructure level, distinction be-
tween equilibrium and deviation is not truism. You should
take advantage of errors, if many believe it. In such a en-
vironment, adverse selection problem is not major issue.
Mere perspectives change outcome. So judging dispersion
of heterogeneous price perspectives becomes important to
make decisions. We face the following question: How do
you form price expectation rational way while you know
traders’ perspectives collectively influence the actual out-
come? Our answer is as follows: Dealers as a whole absorb
unbalanced order flow from macro fundamentals. Mean-
while, dealers submit heterogeneous limit order prices. As
these limit orders, one by one, absorb the unbalanced flow,
transaction prices change. Our dealer perceives this mech-
anism. So he tries to fathom a distribution of reservation
prices among dealers. Also he tries to foresee time path of
the order flow arrivals. Then he expects configuration of
price’s time path. Dealers may agree on such a price de-
termination mechanism. However, still heterogeneous per-
spectives persist. It is because information is limited. The
distribution of reservation prices is not observable. Also
dealers know only a fraction of order flow from macro
economy as their own transactions.

In the next section, we present our model. In the last
section, we summarize effects of model’s parameters on
volume and volatility. And we discuss empirical applica-
bility and the theoretical issue with financial asset market.
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2 Model

2.1 Switching Process of Perspectives

Currencies are traded 24 hours on the globe. They are done
so consecutively by geographically local markets. We con-
sider such a local market. It opens in the morning and ends
in the evening. FX dealers trade in the local market. Clos-
ing hours overlaps with the opening hours of the next mar-
ket. It is possible for dealers to have transaction with over-
seas counterparts then. This implies that the market need
not be cleared at the closing time. There are �� of dealers.
They have transactions with their retail customers. Mean-
while dealers may have wholesale transactions.

Not all of dealers are quoting their prices concur-
rently. If they are confident enough in their expectations,
then they take positions. Their expectation switch between
two states. Let �� be an index function about dealer’s state
of expectation. Let �� for � � �� �� � � � �� be random vari-
ables such that

�� �

�
� if in state 0

� if in state 1
(1)

If �� � �� then the jth dealer does not assume open posi-
tion. If he has retail transaction, he pass it to the wholesale
market. If he is in state 1, he has reservation price and,
based on it, he is ready to have open position. While in
state 1, he must be quoting buying, selling or both prices.
The quoted price is equal to his reservation price. There is
a unique broker in the market. Quoting price means sub-
mitting limit orders to this broker. While in state 0, dealers
do not quote prices. If they have retail transaction, they
hit someone else’s limit order immediately. The number of
limit orders coincides with the number of dealers who are
in state 1. For a case such that one dealer quotes bid and
ask, we neglect their spread. Let�� be the number of those
in state 1;

�� �

���
���

��

Random variable �� takes value of 1 or 0 according to two
exponential distributions. The switching process of � � is
a continuous time Markov chain consisting of two states.
Sojourn time to be in state 1 follows exponential distribu-
tion with parameter ��. Sojourn time in state 0 is also ran-
dom variable which follows exponential distribution with
parameter ��. Let ������ be probability of being 0 at time
�, starting from state 0 . This probability is obtained, for
example by the method given by Ross [4] p.320.

������ �
��

�� � ��
��	����������

��

�� � ��
(2)

By equation (2), 	
��� �
��

�����
for � large.

2.2 Who is quoting market bid rate ?

When transition from state 0 to state 1 occurs, the jth dealer
picks his reservation price 
� . This random variable has
finite support. Rather than using 
� , we use its quantile
value�� � In other words,

�� � �
 �
� � �� where � is a point in 
�’s support

The random variables ��’s are i.i.d with uniform distribu-
tion over the unit interval. Different values of � � result
in long or short positions in our auction process. Trans-
action price coincides with the median of ��’s in a sim-
ple situation such that dealers trade based only on different
price perspectives. Suppose that dealers arrive one by one
at the market. They have reservation prices but no initial
inventory. Capital gain is only motivation. Deliveries and
payments are scheduled later after the auction. During the
auction, long and short positions must match. Hence aggre-
gate net position is zero. We assume that each dealer takes
one transaction unit of open position. Dealers’ employer
exogenously impose this restriction. With such identical
open positions, the number of dealers with long position
matches that of short positions. In our auction process,
those who have open positions submit limit orders. The
prices are equal to their reservation prices. For a given
time, the largest reservation price on the short side coin-
cides with the highest buying price. Let 
� and 
� be
the number of dealers who have short and long positions at
time �. Net aggregate position is zero. We have following
accounting relationships.


� � 
� � 
� ��� (3)


� � 
� �� (4)

where


� �

�
� if�� is odd

� if�� is even
(5)


� � � means that one dealer has squire position, which
means zero inventory in FX market, although he is ready to
have open position. He is quoting both buying and selling
prices. This dealer’s reservation price is the median of all
the��’s.

The highest buying price is called market bid rate. We
identify the market bid as the 
 �th smallest �� . 
� coin-
cides with 
� if �� is even. Otherwise, 
� � 
� � ��
Hence,


� � 
� � 
� (6)

Solving equation (3) and (4), 
 � � �
� ����


��. By inves-
tigating characteristics of 
 �, we can analyze volatility of
the market’s bid rate and hence can approximate volatility
of transaction price.

Next we introduce demand and supply from the econ-
omy’s fundamentals. They take a form of dealer’s re-
tail transactions. As dealers have retail transactions asyn-
chronously, dealers have reverse transactions in the whole-
sale market. Let ����� and ����� be retail demand and
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supply from the fundamentals. They are aggregated across
the dealers. They are accumulative from the morning until
time �� Let ���� be excess demand defined as

���� � ����������� (7)

The dealers as a whole absorb this excess demand. At any
given time, dealers’ net position becomes equal to excess
demand; 
� � 
� � �, where we suppressed time ��
Accounting equations are now as follows.


� � 
� � 
� � �� (8)


� � 
� � � (9)

Then the index for the market bid is now;


� �
�

�
��� ��� 
�� (10)

2.3 Arrival Process of Order Flow

2.3.1 Revisions of Expectations

Order flow takes a form of hitting the market bid or ask.
In addition, we also include the following case as order
flow arrival although it does not hit market rate: “Dealer
enters state 1, picks reservation price. It turns out to be be-
tween the current bid and ask. He quotes bid and ask.” We
assume that bid/ask spread is negligible, if quoted by the
same dealer. This kind of arrival of order flow is necessar-
ily the case such that 
� changes from 0 to 1.

The order flow is generated by two sources. The first
source is dealers’ revisions of expectations. The second
source is retail transactions. We describe the process of
revision of expectations as a combination of a process of
switching between two states and a process of choosing
reservation price. The jth dealer has a random variable
����� of equation (1). It start with ����� � � for all of
dealers. The sojourn time � in state i has an exponentially
distribution. Its parameter is ��� When �� changes value
from 0 to 1, i.e. entering state 1, he picks up his reserva-
tion price, �� � This is a random variable. It is uniformly
distributed over unit interval. When he leaves state 1, i.e.
when �� switching to 0, he abandons �� � When he picks
�� � he compares it with market bid and ask. If �� � ���

then he hits ask. He buys spot FX at ask. He comes to have
long position. Then he submits his reservation price as his
selling price. He expects transaction price will reach his
selling price. He waits with this limit order. If �� � ���

when entering state 1,then he hits bid. He has short po-
sition and waits with his limit order. His buying price is
equal to his reservation price. If ��� � �� � ���, then
he wouldn’t hit neither bid or ask. Instead he quotes his
reservation price as both of bid and ask. When he leaves
state 1, he abandons his �� and corresponding position. If
he has long or short position then, he hits market bid or ask
to close position. Thus switching between states give rise
to the generation of ordered flow. The switching process
of �� generates arrivals and�� process sorts it out between
buying and selling.

2.3.2 Retail Transactions

Retail demand and supply ����� and ����� are accumu-
lative quantities retail customers bought from and sold to
dealers until time �. They are sums over all �� of dealers.
They have Poisson distributions with parameter �� and ���
Constructions of ����� and ����� are as follows.

Dealer’s objective is daily profit maximization. He
has retail customers. No marketing effort is made. He
trades with them anytime they want during business hours.
His profit is constant per transaction. Their arrivals consti-
tute two Poisson processes; one for customer’s buying and
the other selling. Quantity of a retail arrivals is one trans-
action unit. These retail arrivals immediately change into
Poisson arrivals at the market. Such conversion is due to
the following assumption (p1) to (p3). (p1)“ Dealer is risk
neutral.” (p2)“ There is a restriction on the maximum size
of position; one transaction unit.” (p3)“Exceeding the re-
striction on the position due to retail transaction is allowed
but only for a moment.” If he is in state 1, he must have con-
structed open position. Because of (p1), the open position
must be at its maximum. So (p2) must have been binding.
Meanwhile anytime he may have a retail transaction. Had
this occurred, he counterbalances the retail transaction by
hitting the market bid or ask. This is by (p3). The retail
arrivals become Poisson arrivals in the wholesale market
by the immediate counterbalancing. If dealer is in state 0,
he does not want to assume open position. By this reason,
he counterbalances retail transaction. Poisson arrivals pass
through to the market. Aggregated across dealers, Poisson
arrivals are also Poisson. Thus�� and�� are Poisson vari-
ables.

Excess demand � is defined as equation(7). Dealers
as a whole absorb this excess demand. We introduce an
assumption on the value of �� Namely, � cannot be bigger
than dealers’ aggregate open position; for a given� �,

��� � � � �� (11)

If� � �� , then it means that all the dealers in state 1 have
short positions.

2.4 Transitions between Market States

2.4.1 Transition Intensities

Combinations of �� and � constitute a set of states of
the market. Let ����� � be a state of the market such that
�� � � and � � �� For each ��, � takes value such that
��� � � � ��� And �� � �� �� � � � � ��� Hence, there
are ����� � �� of �’s. Processes of �� and � determine
transition intensities between �’s. Let � be infinitesimal
operator defined on them. It is a ����� � �� � ����� � ��
matrix. It lists transition of intensities. We construct �
matrix as follows. For a given �� � �, we consider
��� � �� � ��� � �� matrix. Let �� be this matrix.
Its element ������ � corresponds to ����� � � � ��� for

289



� � ���� � �� Its value is transition intensity from and to
����� � �� ��� For a given jth row, for � � � � ��� �,

������ � ��� �� (12)

������ � � ����� � ���� � ��� � �� � ��� (13)

������ � �� � �� (14)

And because of inequality (11), ����� �� � ��� and
������ �� ��� �� � ���� The diagonal elements of ��

are negative. Negative value means intensity to exit that
state. We put �� as sub-matrices of � so that

� �

�
���
�� � � � �
� �� � � � �

� � �

� � � � ���

�
��� (15)

Matrix �’s sum of the row is 0. The jth row of �� has
positive entries outside of �� in matrix�.

2.4.2 Transition Probabilities

For a given infinitesimal operator �, we can obtain transi-
tion probability matrix � ��� by solving Kolmogrov’s back-
ward equation:

� ���� � �� ��� (16)

The solution is given by

� ��� � ��� (17)

Exponential notation of matrix implies that ��� � �����
�
��

���� �
���

���� � � � � Equation (17) converges to station-
ary probabilities as ����

2.5 Expected Change in a Unit Time Interval

2.5.1 Distributions of Market Bid Rates

We have three finite intervals to define reservation prices.
Reservation price �� is uniformly distributed over unit in-
terval. From�� we construct �� and 
� as follows.

�� ������ such that � ���� � �� (18)

������ � and ������


� ��� � ���� where ��� �� � � (19)

In other words, an inverse function of ���� is � �’s (accu-
mulative) distribution function. We denote it as �!�� Ran-
dom variables�� where � � �� � � � � �� are i.i.d..So are ��
and 
� . We call their supports Q, S and C intervals; Q for
quantile, S for standardized, C for currency denomination.
Let � be bid rate on Q interval. Similarly, � and 
 be bid
rates on S and C intervals. Notations are summarized in
table 2.5.1. Random variable 
 is what we observe empir-
ically. Its stochastic properties boil down to those of � ’s.
They are what we investigate.

Table 1. Bid Rates on Three Intervals

reservation bid support
price rate
�� � Q interval; 
�� ��
�� � S interval; 
�� ��

positive finite C interval;

� 
 
��� �� � 
��

The bid rate is 
�th reservation price from the small-
est. If���� � �"��� for positive integer ", then
 � � "�
The random variable� has Beta distribution. Its density is
given by

#��� �
���� � ��

���� � "����� "�
�	����� ������	�����

(20)
This is Beta density�"�� � � "��� � If�� �� � �"� then
density of bid rate is also given by equation (20).

Next, we calculate moments of ��We express the den-
sity for �� as a sum of two uniform distributions;

$�!� � %$��!� � �� � %�$��!� (21)

where % � �� The terms on RHS are given by

$��!� � � for ! � 
�� �� (22)

$��!� �
�

&� � &�
for ! � 
&�� &�� (23)

where � � &� � �
� � &� � �� Then we obtain distribution

function for �� ;  �!��

��!� �

�	

	�
%! for ! � 
�� &��

%! � �� � %� 
���
�����

for ! � 
&�� &��

%! � �� % for ! � 
&�� ��

(24)

Let ���� be an inverse of ��!� such that, for � � � � �,

���� � %����� � �� � %������� (25)

where terms on RHS are given by ����� � �
�
� for � �


�� �� and

����� �

�	

	�

���
������������

�� �
�
�� &��

for � � 
%&�� %& � � �� %�

� otherwise

(26)

Then we can calculate 	
�����. Since � has Beta distri-
bution (20), 	
������ � 	

������� � And 	
������ is ob-
tained as a sum of incomplete beta integrals.

	
������ �

� �������

���

�����#����� (27)
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2.5.2 Expected Price Change by Transition

We consider price change during unit time interval. Let '
be this interval. We like to measure volatility by the fol-
lowing;

��

 � ���'��� � ������� � (28)

However, ��'�’s density depends on a mar-
ket state at ' . So does ����� It is not
tractable. Instead we calculate an average of
�	
����'�����(�) ���	
������������� � ��� � We
use it to approximate equation (28). Then we derive
attributable factors’ effects on volatility.

Let �
�(�) ���� � be transition probability from
����� � into ��(�) � during ' . Each ����� � has a density
for the market bid and hence, �
���������� ��� Let *���� �
be this expected value. We calculate *�(�) ��*���� ��We
approximate precise expected price change by this differ-
ence of expected values. Let +����� � and +����� � be as
follows;

+����� � 	
�

��

�
�(�) ���� � �*�(�) �� *���� �� (29)

+����� � 	
�

��

�
�(�) ���� � �*�(�) �� *���� ��
� (30)

Market state ����� � has the stationary probability, which
is the limit of equation (17). It is probability to be there on
average for � large. Let ,���� � be that stationary probabil-
ity. We approximate variance of interval’s price change by
the following quantity.

+� 	
�
���

,���� �


+����� � � �+����� ���

�
(31)

2.5.3 Variability of Volatility

In order to obtain qualitative conclusions about +� , we
assume the following three conditions.

(a1) �� � ��: 	
�� � �
(a2) &� � �� &� where � � &� � ��� :

$�!� of equation(21), is symmetric around 0.5
(a3) %&� � -, where � � - � ���

Random variable � is difference of two Poisson variables
as defined by equation (7). By having (a1), ����� �’s come
to have positive stationary probabilities. If � 
� �, then
,���� � � ,������ holds. By having (a2), for � 
� �� den-
sity functions for� corresponding to ����� � and �������
become symmetric around 0.5. Then *�(�) � � *���� � �
��*�(��)� � *���� �� holds. Then equation (29) be-
comes zero. Hence, equation (31) becomes simpler;+� ��

��� ,���� �+����� �� By having (a3), besides (a2), for
any value of %� kinks of ���� takes place at � � - and
�� -. And % is only variable in equation (27).

For small enough -, we have % � �� In this case,
$�!� resembles to a spike on 0.5 on S-interval. In most val-
ues of ��	 
 ���������� � � is very close to 0.5. Hence,

+����� � is calculated within this concentrated range. The
other extreme is large % for small -� In this case $�!�
looks u-shaped. For a given ��� as � changes sign,
	
���������� � � jumps almost between two ends of S-
interval. As % increases from ��, the value of equation
(31) increases. Higher % means more heterogeneous ex-
pectations. Hence, we can conclude that, as reservation
prices become more heterogeneous, bid rate volatility on
S-interval increases.

Random Variable � is the bid rate on S-interval. This
is mapped onto C-interval as defined by equation (19). The
bid rate comes to have larger volatility as �� increases.
Larger �� also implies that reservation prices are more het-
erogeneous.

Random variable � is difference of two Poisson vari-
ables. By the central limit theorem, the difference of two
Poisson variables converges to a normal distribution ( John-
son, Kotz & Kemp [5] ). Our � has both tails truncated;
condition of equation (11); ��� � � � ��� Still, the ap-
proximation works for our purpose. For a given state of
the market ����� �, as �� and �� increase, transition prob-
abilities from � � � to more different values ) of � � )

increases. As �)��� increases, so does �*�(�) ��*���� ���

of+� . So does+� .

Expectation revision cycle also changes volatility. As
the cycle becomes smaller, transitions between ����� �’s
with different value of �� � � increase. For a given unit
time interval, probabilities to reach different values of �
increases. Random number�� comes to have a larger vari-
ance. Similarly to�,��’s larger variance increases volatil-
ity.

2.6 Consistency of Model with Regard to Ex-
pectation Formation

Our model presupposes the heterogeneous reservation
prices. Its price determination process allows the hetero-
geneity persist. The representative jth dealer estimates the
distribution of 
� ’s. Also he estimates time path of �����
He may know specific +����; for example, multinational
corporation’s substantial transactions. Such changes in the
arrivals means a peak or trough on 	
������ By taking ad-
vantage of expected extrema as many as possible, his prof-
its increases. So his present choice of position depends
on the first local extremum of 	
�����. We assume he is
risk neutral. He expects capital gain by reversing position
at such a first local extremum. He substitutes model’s bid
rate for expected transaction price. Thus the first local ex-
tremum becomes his reservation price. Meanwhile, he ob-
serves only his own retail transactions. From them he es-
timates aggregate value ����. Also he estimates 
�’s dis-
tribution. This is not directly observable. Because of these
limitations, dealers have heterogeneous estimates on them.
The heterogeneous reservation prices persist.
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Table 2. Shorter Expectation Revision Cycle

�� and �� �
volume volatility

+ +
cycle effect volume effect

Table 3. Smaller 	
���

��
�����




volume volatility
depending on +

�
��

� �
��

thickness effect

3 Conclusion

Changes in model’s parameter values give rise to expected
trading volume and volatility. They are summarized in Ta-
ble 2 to 5. We can explain empirical observations as com-
bined results of these effects. As is explained in the follow-
ing, volume /volatility correlation seems non-stationary. It
is difficult for existing approaches like in Lyons[1] (p.146)
to handle such variations.

Wada [6] reports statistically significant effects of vol-
ume on volatility, using spot USD/JPY tick data. The data
cover from June ’95 to April ’96 in Tokyo. For every five
minute interval, he regresses volatility on volume. Except
for lunch time, the regression coefficients are all positive.
They are also statistically significant except for a few in the
afternoon. Lunch time period is different; very low volume
and higher volatility. Thus volume and volatility tend to
have positive correlation. However, it varies with an intra-
day pattern.

Our explanation: Demand and supply from macro
economy �� and �� come faster in the morning. Also
due to more uncertainty with regard to daily totals of ��

and ��, reservation prices spread wider in the morning.
Volume and heterogeneity effects work together. As for
lunch time, �� and �� are smaller and revision cycle is
longer. Volume is reduced. Meanwhile thickness effect of
smaller �� makes volatility higher. The latter effect more
than cancels the former. As a result, higher volatility can
accompany small volume for lunch time.

The existing microstructure literature has not been
satisfactory with regard to handling of the lack of appar-
ent benchmark values in case of continuous auctions of fi-
nancial assets. Planning horizon can be any length to seek
capital gains. Defining liquidation value is not truism. This
theoretical issue is coupled with self prophecy aspect of
price perspectives. Since feedback from macro economy
is weak and hence price perspectives are very influential, a

Table 4. Larger Retail Transactions

�� and �� �
volume volatility

+ +
volume effect

Table 5. More Heterogeneous Expectations

% � 2 and/or �� �
volume volatility

no change +
heterogeneity effect

trader has to consider perspective’s dispersion among oth-
ers to have his own. The lack of apparent benchmark value
becomes nontrivial to handle. Our model provides alter-
native approach. We do no rely on the exogenously given
liquidity value. Our benchmark value is the first local ex-
tremum on the expected time path. It becomes reservation
price. Its distribution among dealers determines price and
its volatility. Meanwhile exogenous forces of retail trans-
actions also enter the price determination process. Our ap-
proach looks promising.
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