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A factor analysis model is proposed for the case of a mixture of various types of discrete 

and continuous manifest variables. It is indicated that the likelihood of parameters can 

be described for a mixture of different types of distributions by assuming local indepen

dence. For estimation of the parameters of interest, the method of marginal maximum 

likelihood is used, where scores of latent factors are integrated out from the likelihood. 

A kind of the EM algorithm is utilized for optimization. As an example, the case of a 

mixture of normal, binomial and Poisson distributions is provided.
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1. Introduction 

   Factor analysis was developed as a latent variable model for continuous 

variables. Theories of statistical inference for factor analysis have been provided, 

in which usually multivariate normal distribution is assumed for latent factors (e.g., 

Lawley & Maxwell, 1971). 

   The aim of factor analysis resides in that the relationships among manifest 

variables are to some extent explained by latent variables. From this purpose, 

manifest variables should not be limited to normally distributed variables. How

ever, while the covariance matrix of normally distributed variables constitutes a 

sufficient statistic for the parameters in a usual factor analysis model, the situation 

is more complicated in the case of non-normal or discrete variables. In the latter 

case, individual theories have been developed. 

   For example, the IRT (item response theory) model is a kind of factor analysis 

model. This corresponds to the fact that it was formerly called latent trait model 

(Lord & Novick, 1968). Christoffersson (1975) used the term, factor analysis, in the 
title of the paper concerning dichotomous variables. Though a large part of the 

works of IRT has been concerned with dichotomous variables with unidimensional 

assumption, the theories and methods for graded responses (Samejima, 1969), 

multifactors (Christoffersson, 1975; Muthen, 1978) and nominal responses (Bock, 

1972) have been developed. These also can be regarded as factor analysis models 

in the sense that latent variables are assumed behind manifest variables in a factor

analytic form. 

   One of the problems in treating various types of manifest variables is how to



deal with a mixture of them. There have been two types of approaches. One is 

Muthen's method (Muthen, 1983, 1984; Muthen & Sattora, 1995). This method 

decomposes the process of estimating parameters into stages ; firstly, thresholds 

and related parameters are estimated and secondly, structural parameters (i.e., 

factor loadings) are estimated by the generalized least squares (GLS). For this 

method, the computer program LISCOMP has been provided. 

   The second approach is based on the estimation of polychoric and polyserial 

correlations (Lee & Poon, 1986, 1987 ; Poon & Lee, 1987 ; Joreskog, 1994) which are 

generalizations of tetrachoric and biserial correlations. Structural parameters are 
estimated simultaneously with thresholds or successively by the method of maxi

mum likelihood (ML) or GLS (Lee, Poon & Bentler, 1990a, 1990b, 1992). 

   In these methods, there is a basic notion of thresholds. Using Muthen's termi

nology, the link of thresholds and corresponding manifest variables is "outer 

measurement model", and the model which explains the variation of "outer" conti

nuous variables by assuming latent factors is "inner measurement model". Hence, 

in these models, only ordered categorical variables are considered among discrete 

variables. 

   In this paper, a method which deals with other types of variables including 

ordered categories is proposed.

2. General description of model 

   One of the situations where various types of continuous manifest variables 
coexist with various types of discrete manifest variables is the one in which subjects 
take different types of psychological tests. For instance, a data matrix may consist 
of measurements of response times, dichotomous scores (failure or success), 
polytomous scores (rating scales) and nominal responses (choices of alternatives) in 
addition to ordinary continuous scores. These scores can be explained partly by 
assuming a common latent trait, which is empirically accepted as a general ability. 
The assumption of several distinct abilities depending on the types of measurements 
may also be reasonable apart from the multifactor theory of intelligence. 

   Let xij be the score of the i -th (i =1, --•, N) subject for the j-th (j =1, --•, p) 
continuous or discrete variable. Let Oi = (Oi i, ..•, O )' denote the scores of q latent 
variables for the i-th subject. Let Sj=(8jl, •••, ojmj)' be the vector of the mj parame
ters which determine the distribution of xij given ei. When xij is a score of a 
continuous variable, let the density function of xij be denoted by fj(xij I Oi, Sj). 
When xij is a score of a discrete variable, the probability function of xij is written 
as PP(xij I Oi, Sj). 

   It is assumed that Oi, (i =1, • • •, N) are distributed identically and independently 
of each other. In addition, Oi 1, • • •, Oi, are assumed to be distributed identically and 
independently of each other. In these distributions, the parameters in the density 
function of Oi, h(9i), are assumed to be known and to have fixed values. These



assumptions are not requisites for identification of the model which will be 

proposed. However, since location and dispersion of latent variables are arbitrary 
in most of cases and orthogonality of latent variables frequently brings about 

simplicity of description, the above assumptions are adopted. In ordinary factor 

analysis models, the elements of Oi correspond to factor scores which are not of 

great interest except in the case we are interested in individual subjects. In this 

paper emphasis is more on estimation of factor loadings than individual factor 
scores. Consequently, ei, (i =1, • • •, N) will be treated as nuisance parameters. 

   While the relationships among manifest variables are explained by Oi which are 

common to f.,(•) and P;(• ), the manifest variables are supposed to be independent of 

each other given Oi (local independence). Therefore, the likelihood of 8=(81', , 

8p')' based on the i-th observation, Li*, is described as :

                  ~P71 P Li*(8I xi, 0i)={11fi(x?.i I ei, 6)}{ II P.i(xi1 I ei, 8.i)}, 

                           

.i=1 i=P,+i

(1)

where xi=(xi1, •••, xip)' ; pi continuous variables are supposed to be in the first part 

of the manifest variables and PZ(=p-P1) discrete variables are located in the second 

part. Though, probably same types of probability (density) functions may be in 
equation (1), they are not differentiated. 

   The likelihood of 8 based on N independent observations, L#, is

N 

L# = H Li*(8 I xi, ei). 
        i=1

(2)

To obtain estimates of 8, L# should be maximized. However, since the unknown 

(nuisance) parameters ei, (i =1, • • •, N) are involved in (2), this can not be obtained 
directly. So, we maximize the following marginal maximum likelihood which is 

derived by integrating out Oi which are treated as random variables:

L*=H f Li*(8I xi, 01)h(01)dei, 
      i=1 R (Bt)

(3)

4 

where h(0i) = H e(Oik) and no unknown parameter is in e(Oik) which is a common 
                    k=1 

distribution to the q distributions of factors. For instance, the uniform distribution 

of the range [0, 1] and the normal distribution with mean zero and unit variance 

may be realistic ones. However, note that the type of the distribution of a latent 

variable in a multifactor model might change by factor rotation without the 

assumption of normality or sphericity on ei. 

   For f(.), the normal distribution has been most frequently used. However, the 

gamma or log-normal distribution may be used for measures of response times 

(Ogasawara, 1995). While the distribution functions of the normal and logistic 
distributions have been used for dichotomous or ordered categorical variables, the 

multivariate logit (Bock, 1972) has been used for nominal variables. In addition, 

Poisson distribution is an appropriate one for the distribution of frequencies (e.g., 

the number of errors ; Resch, 1980 ; Ogasawara, 1996a).



3. Estimation of parameters by the EM algorithm 

   It is often difficult to obtain the result of integration in (3). For such cases, the 

numerical integration can be used as an approximation. In IRT, Bock and Aitkin 

(1981) showed that the marginal maximum likelihood estimation became simple by 
using a kind of the EM (Expectation and Maximization) algorithm (Dempster, Laird 

& Rubin, 1977). After this work, the method has been applied to various data and 

various types of manifest variables, which has shown usefulness of the algorithm 

(Bock, Gibbons & Muraki, 1988; Muraki, 1990, 1992; Ogasawara, 1996b). 
   Estimation of parameters in (3) by the EM algorithm is described in the follow

ing. The marginal likelihood is

N 

Z-* = I-        l l1g(xi 18)           i= 

            N r r      _ 1 Z ... Z Li(8i I xi , y)B(y), 
              i=1m1=1 mQ=1

(4)

where y = (ym 1, • . •, ymq)' is the vector which represents a lattice point in the q
dimensional factor space whose density function is h(01). The scalar B(y)= 

4 jI A(ymk) is the weight proportional to h(y). 
k=1 

   The partial derivative of In L in (4) with respect to 8j is

a In L _ N r r a In LZ'(8I xi, y) Li(8I xi, y)B(y) , (>=1, ..., p1)  a8j  m'=1... mq 1 u g(xi 18)

If we denote Li(8 I xi, y)B(y)/g(xi ~ 8) by 0(y I xi, 8), 0(y I xi, 8) is the posterior 

probability of y given the values of xi and 8. Using this, above equation becomes

_ Z ± ... a In Jj(xij I y, 8.7) 0(y I xi, 8).   i=1m1=1 mq=1 a8j (5)

Supposing that q5(y I xi, 8) are given, the information matrix is described as:

E( J2 In L I = E E ... i E( a2 In l j(xij I y, 8j) ) 0(y I xi, 8), (j =1, ..., pi). (6) 
    a8ja8j i=lm1=1 mq=1 a8ja8j

When )'= pl + 1, •  •, p, .fj(.) in (5) and (6) should be replaced by Pj(• ). 
   From (5) and (6), the estimate of 8j given q(y I xi, 8) is iteratively obtained as 

follows:

         (  a2 In L ))-1 a In L 8jci+1)=8j(i)+ E a8
j(i) a8j(i), a8j(i) 

'

(7)

where the subscript (i) indicates that the value is at the i-th iteration. Though the 
value of 0(y I xi, 8) in (6) is regarded as known, actually it contains unknown 
parameters. So, starting with some initial values of 8, the values of 8j are im
proved by (7). Using the improved values, q5(y I xi, 8) is renewed in the iteration in 
(7). These procedures should be repeated until estimated values are stable. 

   The inverse of the information matrix in (6) is the estimator of the asymptotic



covariance matrix of the parameters when y are known. However, since in the 

iterative procedure y were actually unknown, the following estimate should be used 

as an approximation to the exact information matrix (Louis, 1982) :

I = Z C{ Z ... a In LZ(S I xi, y) 0(y I xi, S)} 
    i=1 ml=i mq=1 aS 

    x ~mZl...m~l a In LZaS I x=, y) 0(y I xi, S)fJ'
(8)

4. Cases of the normal, binomial and Poisson distributions 

   In the former sections only general results were given. This was because in 

principle f;(.) and P;(.) can be any types of probability (density) functions. In this 
section, results of a mixture of pl normal distributions, p2 binomial distributions and 

p3 Poisson distributions are derived. 

(1) normal distribution 
   Suppose that given Oil xi; is normally distributed with mean Oi'a; +,U; and 

variance ¢;, where a; is the vector of factor loadings of the j-th manifest variable 

on q common factors, 1-c; is the marginal mean of xi; and 0. corresponds to the 

variance of the j-th unique factor. If each element of ei is independently distribut

ed with mean zero and unit variance, the proportion of the communality of the j

th variable is given by a;'a;/(a;'a;+O;). 

   The function f;(•) is described as :

fi(xi.i I o, &)= 2I O; exp { xZ3-Oi'ai pi)(j=1, (9)

where S;=(a;', u;, 0j)'. From (9), a In f;(•)/a6; in (5) is

a In f3(•) __ xi,-y'ai-pi          C Y111 a(a3', uj)' 0? 

a In f3(•) _ _ 1 (xii-y'ai-uj)2
(10)

and E(•) in the right-hand side of (6) becomes

   -02 1 
E 1n f~(•) l_ y, yy' y 0                 1 0 2     a~

,a8,' I = O,              0 0 2
(11)

   The results of the case when all of manifest variables are normally distributed 

(Rubin & Thayer, 1982) apply here. For this case, the iterative process of (7) is 
unnecessary. Inserting the results of (10) into (5), S; are obtained algebraically. 
The solution corresponds to the case of multiple regression analysis, where y are 
observed independent variables with the weight q(y I xi, 8) for the i-th observation. 
Thus,



(a,', ui)'=[E ... Cyy 1)0(y I xi, 8)]1 
                   :=1m,=1 mq=1 y 

                N r r y 
,/                 l) xijy I xi,                      i=1m,=1 mo=1

      N r r 

    E Z ... Z (xi,-y'aj-u,)2O(y I xi, 8) 
       i=lm1=1 mg=1 

                N r r 

         21 21 ... Z 0(y I xi, S) 
                     i=lm1=1 mq=1 

    1 N r r  _21 Z ... E (xi;-y'ai-uj)2O(y I xi , 8).       Ni=1mi=1 mq=1

(12)

(2) binomial distribution with logistic function 
   Let xi; be the value (one or zero) of a dichotomous manifest variable which is 

distributed with logistic function. Then, the probability function is described as :

P,(x1 ~ 0i 8,)= ex l+(e Pi ' Bi'a)(1 )Z~)}, (j=pl+1, ..., pl+p2),(13)

where a; is the vector of the parameters of so-called discrimination and corre
sponds to the factor loadings of the j-th variable, j , is an intercept which deter
mines the probability of xi;=1 when Bi=O, and 8;=(a;', u;)'. 

Using 1/(1+exp(-1.7x)= fX(1/)exp(_x2/2)dx, 2 the proportion of the variance

of common factors is approximated by a;'a;/1272                              (
a; a;/1.7 )+1 ' 

  From (13), a In P;(•)/a8; in (5) is

a In P;(•) _ _ 1 l[Y a(aj', uj)' -fxzj l+exp(-y'aj-uj) 1 ' (14)

and E(•) in the right-hand side of (6) is

    a2 In P;(•) l _ YY' y1 exp(-y'ai-ui) E( a8;a8;' I -C y' 1 J {1+exp(-y'a;-uj)}2 ' (15)

(3) Poisson distribution 
   Suppose that xi; is the value of a Poisson distributed manifest variable, which 

takes values of nonnegative integers. This is the model of Ogasawara (1996b). 

Poisson distribution is a distribution for relatively low frequencies, which is used as 

a distribution of the number of errors for example in the field of psychological 

measurement. Thus, considering these applications, xi; is assumed to be inversely 

related to ei. That is,  ei is defined as inability which is positively correlated 

with xi;. Since the expectation of a Poisson variable must be positive, the loga

rithm of the expectation is described as (-Oi)'a;+/.[;. The probability function 

becomes

P;(xij I O , 8;)=exp{xi1( Oi'ai+uj)} X exp{-exp( ei'aj+,a)}lxij!, 

       (j=pl+p2+1, ..., P),
(16)



where a; is a kind of factor loadings ; p; is the intercept which determines the value 

of the expectation of xi; when B, is zero, and 8;=(a;', p;)'. From (16), a In P;(•)/a8; 

in (5) is

a In P,(•) ={xi;-exp(-y'a,+u;)}C yl, a(«j', uj)' 11
(17)

and E(•) in the right-hand side of (6) is

   -a 2 E( 8,a8;( P;(-)yy, ly] exp(-y'«j +,u,) (1 R1

   Let /li;=exp( ei'a;+ ji,) and let E(Xj) and Var(Xi;) be the marginal expecta
tion and variance, respectively, of the variable Xi; which takes the value xi; in (17). 
Then

Var(Xi;) = E(X i) + Var(Ai;) (19)

(Meredith, 1971). When Bi are fixed, that is, Var(A1;)=0, well known relationship 
E(Xi;)= Var(Xi;) in Poisson distribution is obtained. Since the variation (E(Xi;)) 
can be interpreted as a specific one to the j-th variable, the communality is defined 
as Var(Ai;)/(E(X1;)+ Var(Ai;)). Incidentally, Meredith (1971) defined this as reli
ability. From Ai; =1 + ( 0 'a1 + /_c;), Var(Ai) = a;'a;. Using this approximation, 
the proportion of the communality of the j-th variable is estimated by a;'a;l(E(Xi;) 
+ a;'a;), where E(Xi;) can be replaced by the sample mean. 

   An anonymous referee pointed out that the communalities for various manifest 
variables can be defined as follows. Generally, the following formula (see e.g., Rao 

(1973), p. 97, (2b. 3.6)) holds

Var(Xi;)=E0 ( Var(Xi; I Oi)) + Varei(E(Xi; I ei)), (20)

where the subscript ei indicates that the expectation and variance are taken with 
respect to it. The communality is defined as Varei(E(X1; I 0 ))/Var(XX;). This is 
a general and comprehensive definition of the communality.

5. Numerical examples 

   Two data sets are used which have been constructed from actual data. Each 

data set consists of the scores of subtests of the adult ability, tests, Tests A/C (N= 

1,495) and Test B (N=1,493). Contents of the subtests are shown in Table 1. 

Among six subtests in each data set, two subtests are assigned to the manifest 

variables of normal, binomial or Poisson distribution : that is, the case of P1=p2= 

p3=2 and p=6 in Section 4. In the normal model, the number-correct score in the 
subtest represents the value of the manifest variable. For logistic model, the 

number-correct score was divided into low or high categories by a threshold around 

sample mean, which constituted a dichotomous variable. The numbers of errors in 

subtests were assigned to the Poisson distributed variables.



   Table 1 

Contents of tests

   Results of model fitting are shown in Tables 2 and 3. The number of common 

factors was set to one or two. In the case of two-factor model, an initial factor 

loadings were estimated by fixing the loading of the first subtest on the second 

factor at zero considering indeterminacy of rotation. These factor loadings were 

rotated to simple structure by the normalized varimax method. Integration of 0, 

was approximated by five points in each dimension of common factors which were 

assumed to have standardized normal distributions. The standard errors of rotat

ed factor loadings in Tables 2 and 3 were obtained by the results for the ML method 

with restrictions (Ogasawara, 1996c). 

   First, the results of one-factor model are examined. Though the estimated 

values of factor loading can not directly be compared between different types of 

manifest variables, the stability of each loading may be assessed by comparing it to 

the value of corresponding standard error. All of the values of factor loadings are 

large enough when compared to their standard errors, which concludes that each 

subtest has common variation in spite of the difference in the types of measures. 

The estimated communality ranges from 7% to 33%. 

   Next, the results of two-factor model are examined. It is also difficult to 

compare directly the values of factor loadings between different types of measures. 

However, by comparing the factor loadings across common factors within each 

manifest variable, it is possible to assign each manifest variable to one of the 

common factors. By this method it is seen that in both of Tests A/C and Test B, 

the second factor consists of the Poisson variables and the first factor remaining 

variables. This may probably come from the fact that the variables of logistic 

function have been constructed from number-correct scores. For this reason the 

variables of logistic function may have formed the same group as the normal 

variables. The patterns of rotated factor loadings in Tables 2 and 3 seem to 

represent clear simple structures. The stability of the patterns is confirmed by 

comparing them with their estimated standard errors. 

   Comparing the results of the two-factor models with those of the one-factor



     Table 2 

Results of Tests A/C

   Table 3 

Results of Test B

models, the followings are observed. The values of u; are fairly stable. The 

values of cb in the two-factor models are reduced from those in the one-factor 

model (slight reduction in Tests A/C). The values of communalities in the two

factor models have increased from the one-factor models, though the increases in 

Poisson variables are slight. 

   From the values of -2 x log likelihood in Tables 2 and 3, x2 values are obtained 

as 386.93 for Tests A/C and 979.28 for Test B with the degree of freedom, 5 for each 

data set considering the rotational freedom. These values are used as testing the



added goodness-of-fit by the two-factor model to the one-factor model. They are 

highly significant (p<.001), which favor the two-factor models over one-factor 

models in these data.

         Table 4 

Results of Simulation (N =1,500)

   In the results of the numerical examples, the same type(s) of manifest variables 

represented each common factor. Since it was suspected that the difference of the 

types of manifest variables might have affected the estimated factor patterns, the 

following simulation with artificial data was carried out. The artificial data 

consist of the six manifest variables (S1-S6) of the same pattern of variable types 

as the above numerical examples. 
   The true values of the parameters are shown in Table 4, where each common 

factor consists of three manifest variables of distinct types of variables. The 

factor pattern represents a simple structure. Based on the population values, 1,500 

random observations were generated with the assumption of the independent 

standardized normal distribution for each. of the latent variables. In Table 4, the 

estimated values by the normalized varimax are provided. They are close to the 

true values except that the two estimated loadings (Sl for Factor II and S5 for 

Factor I) have negative biases. As a whole, these results suggest the appropriate

ness of our method.

6. Discussion 

   It is well known that the factor analysis model is a special case of covariance 

structure analysis (CSA) models. So, some remarks concerning CSA are given in 

this section. CSA is basically a method for continuous variables, though the



ordered categorical variables are treated in the ways depending on models and 

methods. Most of the discrete variables are connected to underlying continuous 

measurement variables by assuming thresholds. That is, even in the case of 

discrete variables, a latent covariance matrix is assumed in the model. In this 

paper, the proposed model does not depend on the covariance matrix. Instead, the 

method of marginal maximum likelihood in IRT was applied to both of continuous 

and discrete variables. Using this method, different types of distributions are 

treated simultaneously. 

   In this paper the factor analysis model among CSA models was considered. 

Though the factor loadings in the normally distributed variables give `covariance' 

structures, the parameters in the Poisson distributed variables cannot easily be 

described as part of covariances. Instead, they should be called the parameters in 

association structures, since they are the parameters in discrete variables.
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