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Abstract

Our subject is a brokered foreign exchange auction. It is done in
continuous time. FX Dealers submit orders asynchronously. Het-
erogeneous expectations and arrivals of retail transactions inter-
act. They together randomly determine a sequence of transaction
prices. We provide a model of order flow generation. This fills
what has lacked in the existing microstructure literature. Trading
volume and volatility are endogenous. We derive causes of their
variability and hence, correlation between them. For example, ce-
teris paribus, the heterogeneous expectations increases volatility.

We abstract the market microstructure as a collection of continu-
ous time Markov processes. We define finite number of states of
the market. The auction takes forms of transitions between these
states. For this argument, we construct an infinitesimal opera-
tor. This makes it possible to derive transition probabilities of the
market for any time interval.

Other features are as follows: (i) Arrivals processes of buyers and
sellers substitute demand and supply schedules to handle asyn-
chronous transactions. (ii) Two sources generate the order arrivals.
One is dealers’ revising expectations and the other is dealers’ retail
transactions. (iii) The bench mark for dealer’s decision making is
not an expected equilibrium but the first peak or trough on the
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expected time path. (iv) Dealers take into account of a distribu-
tion of reservation prices to choose their own. (v) Dealers, having
heterogeneous reservation prices, as a whole absorb excess demand
from the macro fundamentals. Price changes enough to do so. (vi)
We derive stochastic characteristics of bid rate. Using it, we ap-
proximate change in transaction price volatility.

Keywords: Foreign Exchange, Volume and Volatility, Heteroge-
neous Expectations, Continuous Time Markov Process, Infinitesi-
mal Operator
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1 Introduction

1.1 Structure underlying Signed Orders

Auctions in many financial markets are continuous. Transactions take place at bid or
ask. In such auctions, it does matter which side takes initiative. The side being hit
moves backward. The signed orders move price. Transaction volume that is signed
is called “order flow.” Lyons[1] provides empirical observations that order flow set
trends in foreign exchange rates. If the demand shift changed the price, then we
need to analyze causes of the demand shift. Similarly, we need to analyze what
causes changes in order flow. Lyons[1] does not investigate a structure underlying
order flow. It lacks tools. Our paper fills what it lacks. Our model is about the
structure which generates signed orders.

Our model is tailored to brokered auctions in foreign exchange market. Yet,
our model provides an mechanism to handle an issue which are common in many
financial markets. In financial markets, investors have to take other investors’ view
into account: He may be correct but he may be a loser if he is outnumbered. “The
grater fool theory” of stock markets describes another aspect of the same issue. In
our paper, foreign exchange dealers are aware of that expectations are heteroge-
neous among them. They try to fathom distribution of expectations. Based on this
distribution, dealers form own expectations. Our FX dealers take into account each
other what others are thinking. We present a model about this.

1.2 Trading Mechanism as Stochastic Processes

Our approach consists of novel applications of stochastic processes on microstruc-
ture. Two sources generate order flow. They are firstly dealer’s expectation revising
process and secondly dealer’s retail transaction arrival process. The former is two
state continuous-time Markov process. In one state, a given dealer is ready to have
open position. And in the other, he is not. Sojourn times in these two states are
exponentially distributed. Times of switches are random in continuous time. When
switch occurs, he tries to adjust his position. He submits “market order.” This is a
fraction of order generations.

Dealer’s retail transactions also generate orders. Each dealer has retail cus-
tomers. Transactions with them are modeled as Poisson arrivals. Their arrivals
deviate dealer’s position from his chosen level. He tries to recover it. Through the
position adjustments, he pass retail transactions on to inter-dealer wholesale market.
Retail transactions appear Poisson arrival there. Combined individual dealer’s retail
transactions become again Poisson. Order flows from macro economy constitute two
Poisson processes, arrivals of buyers and sellers in FX market.

We define a set of “inventory state of the market”. The market goes through
stochastic transitions between these inventory states. The state is identified with

3



a pair of numbers. The first element is the number of dealers who are ready to
have open positions. The second element is net retail transactions. Two sources
generate arrivals of orders. An arrival of order causes transition between the in-
ventory states. We construct “an infinitesimal operator” for this continuous time
Markov transitions. We use the infinitesimal operator in the Kolmogorov’s backward
differential equation. By solving Kolmogorov’s backward equation, we can obtain
transition probabilities between any inventory states.

Thus far, we set up a structure which sets volume stochastically. Next we provide
a structure which sorts out sign. This structure also characterizes volatility. We
have two features. The first is introduction of a distribution function of reservation
prices. Dealer’s expectation switches between two states as explained above. When
he enters one of the state, he picks up his reservation price. He abandons it when he
exits. This random value follows a given distribution price. He compares his value
with bid/ask in the market. The bid rate here means the maximum of existing limit
order buying prices. Depending on this comparison, if he submits a market order,
then a signed transaction is generated.

The second feature is approximating transaction price by bid rate. We approxi-
mate variation of transaction price volatility by that of bid rate. Transaction price
change consists of two elements; one due to jumps between bid and ask and the
other due to change in bid/ask average. Change in transaction price volatility can
be approximated by change in the bid rate volatility. Each state of the market has
corresponding parameter values for the distribution function for the bid rate. We
show contributing factors’ influence on the bid rate’s distribution function. It is not
tractable to follow each jump of bid rate. However, it is possible to approximate
such jumps’ volatility by variance of ”expected value of bid rate which is associ-
ated with each inventory state distribution function. By doing this, we show that
contributing factors’ effect on the volatility.

1.3 Significance as Economic Model

Foreign exchange market can be interpreted as an asset market where participants
seek capital gain. Like many other financial markets, the auctions are continuous.
Being asset market and having continuous auctions pose two theoretical issues. Our
approach proposes some answers to these issues. First, it is difficult to apply equi-
librium analysis on continuous auctions. Second, no truistic bench mark variable
is available for investor’s optimization problem. Investors’ belief influence outcome
and, knowing it, they choose actions.

In continuous auctions, transactions take place asynchronously. It does so any-
time when two parties agree on the price. This means that before one price clears the
market through the price adjustment, a transaction takes place. The pair of traders
drop out. For such a process, defining demand and supply schedules explicitly and,
hence, equilibrium is not truism. For this issue, we substitute demand and supply
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by arrivals of buyers and sellers. The arrival process is stochastic. They arrive
randomly with different price perspectives. We distinguish expected and realized
values. The realized numbers of buyers and sellers at a given time may not match.

For the second issue, our bench mark variable is the first peak or trough on
expected time path. Dealers assign their values for this variable. The bench mark
values are heterogeneous. Our model provides an expectation formation mechanism
which all the dealers may share but which still they come up with heterogeneous
benchmark value.

1.4 Spot FX market with a Broker

Inter-bank FX transactions have two channels. One is through brokers, and the
other without broker. We model an auction in the former channel. Price quotes go
through brokers. Dealers are not obliged to keep quoting both prices. Only when
they want, they submit limit orders to a broker. We assume an environment of the
market as follows. There is a broker. The auction is continuous and double sided.
Buyers and sellers compete in their own sides. Among submitted limit orders, the
broker keeps announcing the best buying and selling prices. Spot foreign exchange
is the commodity to trade. The market is geographically local. It has trading hours.
There are many dealers. Let’s take a representative dealer. He is risk neutral.
His objective is daily profit maximization. He is allowed to have open position
up to one transaction unit. Deliveries and settlements are scheduled for another
day. So no interest cost incurs in order to have intra-day open position. He trades
with retail customers any time they want during business hours. Their arrivals are
asynchronous and random.

Analyses of continuous auction in financial market need extra approach. Firstly,
transactions take place asynchronously. To handle this, we use arrival intensity of
buyers and sellers, instead of demand and supply. The arrival intensity is expected
number of arrivals per unit time. Our use of the arrival intensity is in line with
Garman [2] and Amihud, Yakov and Mendelson [3]. The next issue poses non trivial
question. At a microstructure level, distinction between equilibrium and deviation
is not truism. In such a environment, adverse selection problem is not major is-
sue. Mere perspectives change outcome. You should take advantage of errors, if
many believe it. So judging dispersion of heterogeneous price perspectives becomes
important to make decisions. We face the following question: How do you form
price expectation rational way while you know traders’ perspectives collectively in-
fluence the actual outcome? Our answer is as follows: Dealers as a whole absorb
unbalanced order flow from macro fundamentals. Meanwhile, dealers submit hetero-
geneous limit order prices. As these limit orders, one by one, absorb the unbalanced
flow, transaction prices change. Our dealer perceives this mechanism. So he tries to
fathom a distribution of reservation prices among dealers. Also he tries to foresee
time path of the order flow arrivals. Then he expects configuration of price’s time
path. Dealers may agree on such a price determination mechanism. However, still
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heterogeneous perspectives persist. It is because information is limited. The distri-
bution of reservation prices is not observable. Also dealers know only a fraction of
order flow from macro economy as their own transactions.

Organizations of the rest of this paper are as follows; In the next section, we
present our model of stochastic price determination. (i) We present stochastic pro-
cesses which generate order arrivals. (ii) We construct a matrix of continuous time
Markov process which determines transition probabilities of the market inventory
states. (iii) We define reservation price as a random variable on unit interval. We
derive a distribution function of bid rates. (iv) We present a process of dealer’s ex-
pectation formation. In the third section, we analyze causes of volume and volatility
change and their effects. Next, conclusion and appendix follow.

2 Stochastic Order Generations

2.1 Switching Process of Perspectives

Currencies are traded 24 hours on the globe. They are done so consecutively by
geographically local markets. We consider such a local market. It opens in the
morning and ends in the evening. FX dealers trade in the local market. Closing
hours overlaps with the opening hours of the next market. It is possible for dealers to
have transaction with overseas counterparts then. This implies that the market need
not be cleared at the closing time. There are nd of dealers. They have transactions
with their retail customers. Meanwhile dealers have wholesale transactions.

Not all of dealers are quoting their prices concurrently. They do so, if they
are confident enough in their expectations. Their expectation switch between two
states. Let

{
state 0 , state 1

}
be these states. Let Ij be an index function about

dealer’s state of expectation. Let Ij for j = 1, 2, . . . nd be random variables such
that

Ij =

{
0 if in state 0

1 if in state 1
(1)

If Ij = 0, then the j th dealer does not assume open position. If he has retail
transaction, he pass it to the wholesale market. If he is in state 1, he has reservation
price and, based on it, he is ready to have open position. While in state 1, he
must be quoting buying, selling or both prices. The quoted price is equal to his
reservation price. There is a unique broker in the market. Quoting price means
submitting limit orders to this broker. While in state 0, dealers do not quote prices.
If they have retail transaction, they hit someone else’s limit order immediately. The
number of limit order prices coincides with the number of dealers who are in state
1. For a case such that one dealer quotes bid and ask, we neglect their spread. Let
N1 be the number of those in state 1;

N1 =

nd∑
j=1

Ij
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Random variable Ij takes value of 1 or 0 according to two exponential distributions.
The switching process of Ij is a continuous time Markov chain consisting of two
states. Sojourn time to be in state 1 follows exponential distribution with param-
eter θ1. Sojourn time in state 0 is also random variable which follows exponential
distribution with parameter θ0. Let P01(t) be probability of being 1 at time t, start-
ing from state 0 . This probability is obtained, for example by the method given by
Ross [4] p.320.

P01(t) =
θ1

θ0 + θ1

exp−(θ0+θ1)t +
θ0

θ0 + θ1

(2)

By equation (2),

lim
t→∞

E[N1] =
θ0nd

θ0 + θ1

(3)

2.2 Who is quoting market bid rate ?

When transition from state 0 to state 1 occurs, the j th dealer picks his reservation
price Yj. Yj’s are i.i.d.. This random variable has finite support. Rather than
using Cj, we use random variable Xj as defined below. Let H(y) be (accumulative)
distribution function for Yj.:

Xj = H( Cj ) (4)

The random variables Xj’s are i.i.d with uniform distribution over the unit interval.

Different values of Xj result in long or short positions in our auction process.
Transaction price coincides with the median of Xj’s in a simple situation such that
dealers trade based only on different price perspectives. Suppose that dealers arrive
one by one at the market. They have reservation prices but no initial inventory.
Capital gain is only motivation. Deliveries and payments are scheduled later after
the auction. During the auction, long and short positions must match. Hence
aggregate net position is zero. We assume that each dealer takes one transaction
unit of open position. Dealers’ employer exogenously impose this restriction. With
such identical open positions, the number of dealers with long position matches that
of short positions. In our auction process, those who have open positions submit
limit orders. The prices are equal to their reservation prices. For a given time, the
largest reservation price on the short side coincides with the highest buying price.
Let Z− and Z+ be the number of dealers who have short and long positions at time
t. Net aggregate position is zero. We have following accounting relationships.

Z− + Z+ + Z0 =N1 (5)

Z− − Z+ =0 (6)

where

Z0 =

{
1 if N1 is odd

0 if N1 is even
(7)
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Z0 = 1 means that one dealer has square position, which means zero inventory in
FX market, although he is ready to have open position. He is quoting both buying
and selling prices. This dealer’s reservation price is the median of all the Xj’s.

The highest buying price is called market bid rate. We identify the market bid as
the Zbth smallest Xj. Zb coincides with Z− if N1 is even. Otherwise, Zb = Z− + 1.
Hence,

Zb = Z− + Z0 (8)

Solving equation (5) and (6), Zb = 1
2
(N1 + Z0). By investigating characteristics of

Zb, we can analyze volatility of the market’s bid rate and hence can approximate
volatility of transaction price.

Next we introduce demand and supply from the economy’s fundamentals. They
take a form of dealer’s retail transactions. As dealers have retail transactions asyn-
chronously, dealers have reverse transactions in the wholesale market. Let Rd(t)
and Rs(t) be retail demand and supply from the fundamentals. They are aggre-
gated across the dealers. They are accumulative from the morning until time t. Let
R(t) be excess demand defined as

R(t) = Rd(t)−Rs(t) (9)

The dealers as a whole absorb this excess demand. At any given time, dealers’ net
position becomes equal to excess demand; Z−−Z+ = R, where we suppressed time
t. Accounting equations are now as follows.

Z− + Z+ + Z0 = N1 (10)

Z− − Z+ = R (11)

Then, since Zb = Z1 + Z0, the index for the market bid is now;

Zb =
1

2
(N1 + R + Z0) (12)

where

Z0 =

{
1 if N1 + R is odd

0 if N1 + R is even
(13)

2.3 Order Arrival Generations

2.3.1 Revisions of Expectations

Orders consist of two types; the market orders and the limit orders. The mar-
ket order hits the market bid or ask. The market bid/ask here means the maxi-
mum/minimum of the existing buying/selling limit order prices. The limit order
specifies its own price. The same dealer can submit the market order while he keeps
the limit order. In the following we specify stochastic mechanism to generate these
two types of orders.
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picked value of Xj

Xj < bid bid < Xj < ask ask < Xj

action upon quoting
entry into state 1 hitting bid bid and ask hitting ask

consequent
position short square long

accompanying
limit order price buying price both prices selling price

Table 1: Picked Reservation Price and Accompanying Actions

The sequence of orders are generated by two sources. The first source is dealers’
revisions of expectations. The second source is retail transactions. The process of
revision of expectations consists of two parts; a process of switching between two
states and a process of choosing reservation price. The j th dealer has a random
variable Ij(t) of equation (1). It start with Ij(0) = 0 for all of dealers. The sojourn
time s in state i has an exponential distribution. Its parameter is θi. When Ij

changes value from 0 to 1, i.e. entering state 1, he picks up his reservation price,
Xj. This Xj is a random variable. It is uniformly distributed over unit interval.
When he leaves state 1, i.e. when Ij switching to 0, he abandons Xj.

Table (1) summarizes actions upon entry into state 1. When a dealer picks Xj,
he compares it with market bid and ask. If Xj > ask, then he hits ask. He buys
spot FX at ask. He comes to have long position. Then he submits his reservation
price as his selling price. He expects transaction price will reach his selling price.
He waits with this limit order. If Xj < bid when entering state 1,then he hits bid.
He has short position and waits with his limit order. His buying price is equal to his
reservation price. If bid < Xj < ask, then he wouldn’t hit either bid or ask. Instead
he quotes his reservation price as both of bid and ask. When he leaves state 1, he
abandons his Xj and corresponding position. If he has long or short position then,
he hits market bid or ask to close position. Thus switching between states give rise
to the generation of arrivals of orders. The switching process of Ij generates volume
and choosing process of Xj sorts it out between buying and selling. We assume that
bid/ask spread is negligible, if quoted by the same dealer.

2.3.2 Retail Transactions

Retail demand and supply Rd(t) and Rs(t) are accumulative quantities which retail
customers bought from and sold to dealers until time t. They are sums over all
the dealers. The retail transactions appear as order flows in the wholesale market.
Rd(t) and Rs(t) have Poisson distributions with parameter λd and λs.

R(t) = R(0) + (λd − λs)t (14)

Constructions of Rd(t) and Rs(t) are as follows.
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Dealer’s objective is daily profit maximization. He has retail customers. No
marketing effort is made. He trades with them anytime they want during business
hours. His profit is constant per transaction. Their arrivals constitute two Poisson
processes; one for customer’s buying and the other selling. Quantity of a retail
arrivals is one transaction unit. These retail arrivals immediately change into Pois-
son arrivals of order flows in the wholesale market. Such conversion is due to the
following assumption (p1) to (p3).

(p1) Dealer is risk neutral.

(p2) There is a restriction on the maximum size of position; one transaction unit.

(p3) Exceeding the restriction on the position due to retail transaction is allowed
but only for a moment.

If he is in state 1, he must have constructed open position. Because of (p1), the
open position must be at its maximum. So (p2) must have been binding. Meanwhile
anytime he may have a retail transaction. Had this occurred, he counterbalances
the retail transaction by hitting the market bid or ask. This is by (p3). The
retail arrivals become Poisson arrivals in the wholesale market by the immediate
counterbalancing. If dealer is in state 0, he does not want to assume open position.
By this reason, he counterbalances retail transaction. Poisson arrivals pass through
to the market. Sum of Poisson’s is also Poisson. Having aggregated across dealers,
Rd and Rd are also Poisson variables.

Excess demand R is defined as equation(9). Dealers as a whole absorb this
excess demand. We introduce an assumption on the value of R. Namely, R cannot
be bigger than dealers’ aggregate open position; for a given N1,

−N1 ≤ R ≤ N1 (15)

If R = N1 , then it means that all the dealers in state 1 have short positions.

2.4 Markov Transitions of Market Inventory States

2.4.1 Transition Intensities

A pair of N1 and R determine aggregated dealers’ position. Minus valued inventory
equals to the excess demand R. The combinations of N1 and R constitute a set of
such net inventories. We call this set of net inventory and denote by Ω. We call its
element an inventory state Let ω(n, r) be an inventory state such that N1 = n
and R = r.

Ω =
{
ω(n, r)

}
For each value of N1, R takes integer values such that −N1 ≤ R ≤ N1. For a given
N1, there are 2N1 + 1 of R’s values. And N1 = 0, 1, . . . , nd. Hence, Ω contains

Σnd
N1

= (nd + 1)2 (16)
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inventory
state ω(n− 1, 0) . . . ω(n,−1) ω(n, 0) ω(n, 1) . . . ω(n + 1, 0)

column
number ξn−1 . . . ξn − 1 ξn ξn + 1 . . . ξn+1

intensity nθ1 0 λs * λd 0 (nd − n)θ0

Table 2: Intensities to Exit from ω(n, 0) and to Enter Other States When
the market exits from ω(n, 0), it enters into either ω(n− 1, 0), ω(n,−1), ω(n, 1) or
ω(n + 1, 1). Elements left of the ξn−1 th are 0. Also they are 0 right of the ξn+1 th
column, where ξj = (j − 1)2 + (j + 1) for j = n− 1, n, n + 1. The exit has negative
intensity; ∗ = −

{
(nd − n)θ0 + nθ1 + λd + λs

}
. The sum of the ξn th row is zero.

of ω’s. Processes for N1 and R determine transition intensities between ω’s. Let Q be
infinitesimal operator defined on Ω. By equation (16), it is a (nd +1)2× (nd +1)2

matrix.

We construct Q matrix as follows. Element Q(i, j) shows transition intensity
from the ith into j th state. We arrange ω’s from those with smaller N1 and, for
each N1, we put them from R = −N1 to R = N1. Table (8) in Appendix shows the
correspondences between ω’s and locations in Q matrix.

The ith row of Q lists the intensities of exiting ith state and entering others.
We consider transitions from ω(n, 0) to other states as an example. They are in the
n2 + n + 1 th row. Table (8) in Appendix shows correspondences between inventory
states and their locations in Q matrix. Let ξn = n2 + n + 1 to simplify notation.
Table (2) lists transition intensities from ω(n, 0). Their derivations are given in the
following. The example is for the cases such that N1 < nd and R 6= ±N1. Other
cases are in Appendix.

Element Q(ξn, ξn) shows intensity to depart from ω(n, 0). Exit from ω(n, 0)
occurs when N1 or R changes value. The market moves into one of the following
states; ω(n− 1, 0), ω(n,−1), ω(n, 1), and ω(n + 1, 0). If N1 = n, the one of the N1

dealers in state 1 may switch to state 0. Sojourn time in state 1 has an exponential
distribution with parameter θ1. There are n of i.i.d. sojourn times. So the intensity
is nθ1. With this the market moves to ω(n−1, 0). As for ω(n, 1), ∆R = +1 is Poisson
arrival. Its intensity is λd. With this intensity, the market moves to ω(n, 1). And
similar arguments hold for ω(n + 1, 0) and ω(n,−1).

2.4.2 Transition Probabilities

For a given infinitesimal operator Q, we can obtain transition probability matrix
P (t) by solving Kolmogrov’s backward equation:

P ′(t) = QP (t) (17)
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The solution is given by
P (t) = eQt (18)

Exponential notation of matrix implies that eQt = I + Qt + 1
2
Q2t2 + 1

3!
Q3t3 + . . . .

The elements on the (i, j)th row of P (t) tells the probability to be the jth state
after time t elapsed, starting with ith state. Equation (18) converges to stationary
probabilities as t →∞.

2.5 Distributions of Market Bid Rates

2.5.1 Distribution of Bid Rate on P interval

We have three finite intervals to define reservation prices. They are P , S and
C intervals. P interval is unit interval [0, 1]. Reservation price Xj is uniformly
distributed on P . Random variable Xj is mapped on another unit interval S by
function J(x). Then it is mapped on finite C interval; [γ0, γ1] where γ0, γ1 > 0.
From Xj we construct Yj and Cj as follows.

Yj = J(Xj) (19)

where J(x) is piecewise continuous, J ′(x) > 0 where is differentiable. And that
J(0) = 0, and J(1) = 1.

Cj = γ0 + γ1Yj where γ0, γ1 > 0 (20)

We call the jth smallest reservation prices Cj where j = 1, . . . , N1. Cj’s are
i.i.d. They have denomination of the currency. The support for Cj is positive
finite interval [γ0, γ1]. Random variable Yj is the standardized value of Cj. Yj has a
distribution function H(y); H(y) = Pr(Yj ≤ y) . Random variable Xj is constructed
from Yj, using H(y) ;

Xj = H(Yj). (21)

where Xj is uniformly distributed on [0, 1]. Function J(x) in equation (19) is an
inverse function of H(y).

We denote bid rates on P ,S and C intervals by X, Y and C, dropping subscript.
Notations are summarized in table 2.5.1. We investigate volatility of C on S interval.
The change in volatility is attributable to that of Y as well as coefficient γ1 of
equation (20).

The infinitesimal operator Q determines transition probabilities between the in-
ventory states, for a given time interval. For a given the market inventory state ω,
the bid rate X is the Zbth reservation price from the smallest by equation(12). If
N1 + R = 2κ − 1, for positive integer κ, then Zb = κ by eq (12). The bid rate X
has Beta distribution. For N1 = n, its density is given by

f(x) =
Γ(n + 1)

Γ(κ)Γ(n− κ + 1)
xκ−1(1− x)(n−κ+1)−1 (22)
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reservation bid
prices rate support

Xj X P interval; [0, 1]

Yj Y S interval; [0, 1]
positive finite C interval;

Cj C [γ0, γ0 + γ1]

Table 3: Bid Rates on Three Intervals where j = 1, . . . N1 and 0 < γ0, γ1

There are N1 of reservation prices. They are renumbered from the smallest.

This is Beta density(κ, n− κ + 1), where N1 = n. If N1 + R = 2κ, then the density
of bid rate is also given by equation (22).

Next, we calculate moments of Y on S interval. Since Y = J(X), we can obtain
them as E[ J(X) ] for k = 1, 2, .̇

2.6 Dealer’s Expectation Formation

In this subsection, we show how representative dealer can form expectation using
our model. He forms expectation, knowing that dealers’ expectations differ each
other. Dealers may agree on the price determination mechanism but still they end
up with having different price perspectives.

He observes bid rate samples on C interval;C(t). The distribution of reservation
prices Cj is not observable. Nor are parameters of two order generation Processes.
He can observe only his own retail transactions for sure. His present action depends
on FLE, the first local extremum, of C(t + s) for s > 0. Forming expectation on
C(t + s) requires estimates on x(t), y(t), and parameters of equation (19) and (20).
Let stared variables and a funcion be his estimates of the original ones; for example,
J∗(x) for (19) and γ∗0 and γ∗1 for (20)

a. Now we are time t. He wants to estimate Zb of (12). He fix E[N1(t + s)] = n∗

for s > 0 and Z0 = 0.

b. He wants to estimate R(t + s) for s > 0. Its expected value is given by equation
(14). λd and λs may not be stationary. This gives rise to FLE. He thinks
unbalanced arrivals would last intra-day, for the duration of τ from now on.
He substitutes R∗(t) and (λ∗d−λ∗s)τ into equation (14). After time τ , he thinks
that arrivals may be either balanced or reversed. He calculates R∗(t+ τ); FLE
of R(t + s) for s > 0. Let ∆R∗ be ∆R∗ = (λ∗d − λ∗s)τ Let the double stared be
FLE value;R∗∗ = R∗(t + τ). Using simplifying notations,

R∗∗ = R∗(t) + ∆R∗ (23)
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c. He substitutes R∗∗ and n∗ into (12). He obtains Zb∗∗.

Zb∗∗ = Zb∗ +
∆R∗

2
(24)

d. For a given pair of Zb and N1, the density of bid rate X on P interval is given
by

Γ(N1 + 1)

Γ(Zb)Γ(N1 − Zb)
xZb−1(1− x)(N1−Zb+1)−1 (25)

Hence, the expected value of this Beta distribution is given by

E[ X ] =
Zb

N1

. (26)

He substitutes Zb∗∗ and N1 = n∗ into equation (26). Then he obtains his FLE
on P interval.

x∗∗ =
1

n∗

(
zb∗(t) +

∆R∗

2

)
(27)

e. He substitutes x∗∗ into equations (19) and (20).

c∗∗ = γ∗0 + γ∗1J
∗( x∗∗ ) (28)

If J∗(x) is linear in the relevant range, then

c∗∗ = C(t) + γ∗1J
∗(

∆R∗

2n∗
) (29)

This is his FLE on C interval.

Only observable variable is bid rate on C interval. Therefore dealers may agree on
the price determination mechanism. They are likely to have different estimates on
the parameters. The heterogeneity of expectations persists.

3 Variability of Volume and Volatility

3.1 Approximating Volatility

Our volatility is the variance of equally spaced samples of bid rate. We approximate
changes in the transaction price volatility by the bid rate. There are always bid
and ask. One of them randomly becomes transaction price. Therefore, transaction
price volatility consists of two parts; the first due to bid/ask spread and the second
due to movements of their levels. Bid and ask, though not simultaneously, tend to
move together. We assume the first part of the volatility is constant for a given day.
We focus on the second part. We approximate its change by change in the bid rate
volatility.
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λd and λs ↑
volume volatility

+ +
volume effect

Table 4: Larger Retail Transactions: Var(R) = λd + λs where λj = Var(Rj) for
j = d, s.

θ0 and θ1 ↑
volume volatility

+ +
cycle effect convergence effect

Table 5: Shorter Expectation Revision Cycle: The expected cycle length to go
through two expectation states is given by 1

θ0
+ 1

θ1

θ0

θ0+θ1
↓

volume volatility
+ +

if 1
θ0

+ 1
θ1
↑ thin market effect

Table 6: Smaller E[N1],i.e., Thin Market : E[N1] = θ0nd

θ0+θ1

α ↑ and/or γ1 ↑
volume volatility

no change +
heterogeneity effect

Table 7: More Heterogeneous Expectations: α increases volatility of bid rate
on S interval and, for a given α, γ1 increases that on C interval.
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3.2 Causes and Effects

Parameters of two order generating sources influence volatility as well as trading
volume. Dispersion of reservation prices also influences volatility. Causes and effects
are summarized in Tables (4) to (7). Prices change enough to absorb unbalanced
arrivals of retail transactions. Dealers as a whole absorb them with aggregate open
position. As R fluctuates more, volatility increases. Also as the reservation prices
are dispersed thinly and/or on a wider range, then volatility increases.

Volume Effect: The first source of the order flows is retail transactions. As the
retail transactions increase, volatility increases. We call such consequence “volume
effect”. This is consequence of stochastic property of R. Random variable R(t),
as defined in equation (9), is difference of two Poisson variables. Its expected value
is (λd − λs)t and its variance is (λd + λs)t. Let N denote random variable with
standard normal distribution. Then for R(0) = 0

R(t)− (λd − λs)t√
(λd + λs)t

⇒ N (30)

By the central limit theorem, the difference of two Poisson variables converges to a
normal distribution and the approach to normalty is rapid. ( Johnson,Kotz & Kemp
[5] p.191). Our R has both tails truncated; condition of equation (15); −N1 ≤ R ≤
N1. As N1 increases, we have better approximation. As λd and λs increase, trading
volume increases. At the same time, R come to have larger variance. For a given
N1, Zb changes more. And hence, Var[Y ] and Var[C] increase. We have volume
effect.

Convergence Effect: The second source of order arrivals is the expectation
revisions. This process has two parameters ; θ0 and θ1. The dealer’s sojourn times
in state 0 and state 1 are exponentially distributed. The expected sojourn times
are given by 1

θ0
and 1

θ1
. As θ0 and θ1 become smaller, frequent revisions increases

trading volume. We call this consequence “ cycle effect” on trading volume. The
frequent revisions speed up transitions. Transition probability Pr

(
ω(m, l) at t +

s |ω(n, r) at t
)

converges faster to the stationary probability πs(m, l). For a given
finite time interval and N1 = n, the probabilities to reach far away values of N1

increase. Volatility increases. The volatility in this case is the one calculated for
short interval of time. We call such “convergence effect”. As the time interval to
take equally spaced samples becomes longer, this effect disappears.

Thin Market Effect: As shown in equation (3), relative size of θ0 to θ1 changes
the expected number of dealers in state 1. This ratio is the thickness of the market.
As θ0 becomes relatively smaller, the market becomes thin. Volatility increases. We
call this “thin market effect” on volatility.

Heterogeneity Effect: As the reservation prices spread out wider, the required
price change to absorb a given amount of unbalanced retail transactions becomes
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larger. We call such causality “heterogeneity effect”. Let τ be unit time interval.
We like to show this effect as an increase in the following value.

Var [J (X(τ))− J (X(0))] . (31)

We need to specify the density of the reservation prices. It will be h(y) of equation(32)
. Tractability of its (accumulative) distribution function H(y) and the latter’s in-
verse function depend on it. We choose a linear combination of two uniform distri-
butions for Yj’s density. This functional form makes H(y) peace-wise continuous.
With this linear function, we can still approximate various patterns of dispersion.
Meanwhile, J(X) is tractable. We introduce an example of Yj’s density in the next
subsection. With these, we show by approximation that, as the reservation prices
become more heterogeneous, the value of equation(31) increases and hence the vari-
ance of bid rate increases.

3.3 Volatility on S Interval

3.3.1 Distribution of Reservation Prices on S Interval

We express the density for reservation price, Yj, as a weighted sum of two uniform
distributions. We use uniform distribution for the sake of tractability of J(x)

h(y) = αh1(y) + (1− α)h2(y) (32)

where α > 0. The terms on RHS are given by

h1(y) = 1 for y ∈ [0, 1] (33)

h2(y) =
1

β2 − β1

for y ∈ [β1, β2] (34)

where 1 > β2 > 1
2

> β1 > 0. Since equation(32) consists of The uniform distribu-
tions, H(y) and J(x) become piecewise linear. Function J(x) of eq(19) is the inverse
function of (accumulative) distribution function of Yj. By changing values of α,β1

and β2, the density h(y) takes a form from a spike-like to U shape. For α > 1, it
looks U shape. To keep equation (32) from becoming negative, these parameters
must satisfy

0 < α <
1

1− (β2 − β1)
. (35)

Then we obtain the distribution function for Yj; H(y).

H(y) =


αy for y ∈ [0, β1]

αy + (1− α) y−β1

β2−β1
for y ∈ [β1, β2]

αy + 1− α for y ∈ [β2, 1]

(36)

Let J(x) be an inverse of H(y) such that, for 0 ≤ x ≤ 1,

J(x) = J1(x) + J2(x), (37)
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where terms on RHS are given by and

J1(x) =
1

α
x for x ∈ [0, 1] (38)

J2(x) =


0 for x ∈ A1

1−α
(β2−β1)α+1−α

(− x
α

+ β1) for x ∈ A2

J2(αβ2 + 1− α) for x ∈ A3

(39)

where A1 = [0, αβ1], A2 = [αβ1, αβ2 + 1− α], A3 = [αβ2 + 1− α, 1].

Then we can calculate E[Y ] as E[J(X)] = E[J1(x)] + E[J2(x)]. Since X has
Beta distribution (22), E[J1(X)] = κ

α(n+1)
. And E[J2(X)] is obtained as a sum of

incomplete beta integrals; one for A2 and the other for A3. In later subsection, by
changing value of α, we describe the effect of heterogeneity of reservation prices.

Equation (38) and (39) have liner forms. Yet equation (31)is not yet tractable.
We approximate eqn(31) as in the following.

3.4 Movements between On-Average Locations

We use representative value of Y for each inventory state. For a given inventory
state ω(n, r), let µ(n, r) be an expected value of J(X);

µ(n, r) ≡ E[ J(X)|ω(n, r) ] (40)

where n = 0, 1, . . . , nd and r = −n + 1, . . . , 0, 1, . . . , n. We do not have r = −n
in the above. The inventory state ω(n,−n) does not have bid rate. If R = −N1,
everybody is quoting selling price. Starting with the initial state of ω(n, r), after
τ elapse, the market inventory state moves to ω(m, l). We compare the on-average
locations of Y ; µ(m, l)− µ(n, r).

Let qt(m, l|n, r) be transition probability from ω(n, r) to ω(m, l) during time
interval [0, τ ]. For a given time, the market is in the inventory state ω(n, r) with sta-
tionary probability πs(n, r). Whichever state you may start with, πs(n, r) is probabil-
ity to be in ω(n, r) on average as t →∞. It is the limit of equation (18). For a given
ω(n, r) where r 6= −n, we define the following random variable. For m = 1, 2, . . . , nd

and l = −m + 1, . . . ,m

Wn,r = µ(m, l)− µ(n, r) with q(m, l|n, r) (41)

W = Wn,r with π(n, r) (42)

where, for r > −n,

q(m, l|n, r) =
qt(m, l|n, r)∑

k>−j qt(j, k|n, r)
(43)

π(n, r) =
πs(n, r)∑

l>−m πs(m, l)
(44)
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In the above, we adjusted probabilities after excluding the case of ω(N1,−R). We
approximate equation (31) by Var[ W ].

Var[ W ] =
n=nd∑
n=1

r=n∑
r=−r+1

E[ W 2
n,r]π(n, r)−

{n=nd∑
n=1

r=n∑
r=−n+1

E[ Wn,r]π(n, r)
}2

(45)

In the next subsection we use the equation (45) to show effects of the relevant factors
on volatility.

3.5 Example of Heterogeneity Effect

We like to show the value of equation (45) increases as the reservation prices become
more heterogeneous. Deriving this result only through qualitative argument is,
however, difficult. We used a numerical example. By approximation, we obtained
the heterogeneity effect. For the sake of tractability, we assume three simplifying
conditions as shown below. And our numerical examples are nd = 10 and λd = λs =
2.5.

(a1) λd = λs

(a2) β2 = 1− β1 where 0 < β1 < 0.5

(a3) αβ1 = ε, where 0 < ε < 0.5

The implications are as follows.

(a1): Random variable R is difference of two Poisson variables as defined by
equation (9). By (a1), E[R] = 0. Assumption (a1) makes it possible for each inven-
tory state to have positive stationary probability. In addition, together with central
limit theorem of (30), for given n and r, we have

π(n, r) = π(n,−r). (46)

R changes on its own except when R = ±N1. So we use the following approxi-
mation.

q(m,−l|n,−r) ≈ Pr
(
N1(t) = m|N1(0) = n

)
Pr

(
R(t) = l |R(0) = r

)
(47)

We apply normal distribution to evaluate Pr
(
R(t) = l |R(0) = r

)
as Pr

(
∆R(t) =

l− r
)
. By (a1), for a given r, Pr

(
∆R(t) = r

)
= Pr

(
∆R(t) = −r

)
. This symmetry is

used to evaluate the second term of equation (45).

(a2): The density h(y) of equation (32) has line symmetry. The line of symmetry
goes through y = 0.5. Meanwhile, each market inventory state has the density for
bid rate on P interval, X. Among these densities, there are pairs with line symmetry
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each other. Table (9) in the appendix shows list of such pairs. Expected values of
Y of these pairs sum up to 1. This symmetry remains when we change degree
of reservation price heterogeneity. They simplify evaluation of the second term of
equation (45).

(a3): As we change value of α while keeping (a3), reservation price density of
h(Y ) changes from a spike in the middle to two spikes on both ends. Since β1 < 0.5,
for a given ε < 0.5, it must be that α > ε

β1
. When α ≈ ε

β1
, h(y) looks like a spike

at y = 0.5. When α = 1, then h(y) is horizontal line. When α > 1, h(y) has a dent
in the middle. The tails with squire shape on both ends have the same probability.
Together with (a2), substituting (a3) into equation(39), J(x) has kinks at x = ε
and 1 − ε as is shown in Figure(1). Parameter α signifies degree of dispersion of
reservation prices in equation (32). And α becomes only variable when we calculate
expected value of equation (39). If value of equation (45) increases as α increases,
then we have heterogeneity effect.

We used numerical examples of nd = 10 and λd = λs = 2.5 and approximated
equation (45). The result confirmed heterogeneity effect. The details of approxima-
tion are given in Appendix.

The value of α is not the only parameter for the heterogeneity. While α sets
degree of heterogeneity on S interval, γ1 in equation (20) sets degree of the hetero-
geneity on C interval. For a given value of Var[W ], as γ1 increases, Var[C] increases.
The parameter γ1 also causes heterogeneity effect. @

4 Conclusion

We describe brokered foreign exchange auction as a mechanism which consists of
continuous time stochastic processes. Our approach makes volume and volatility
endogenous. Heterogeneity of expectations, order arrivals from the retail customers
interact. These two key elements and the dealers’ revising of expectations determine
trading volume and volatility. We show causes of variability of volume and volatility.
However, it is difficult to show the effect of heterogeneous expectations completely
in an analytical way. We used numerical example to confirm it.

Our model provides what has been lacked in the existing microstructure liter-
ature. First, our use of arrival intensities makes it possible to analyze continuous
auction. It is an awkward problem to defining equilibrium for continuous auction.
Our approach distinguishes expected value and realized value. Constant expected
value and fluctuated observed value are not contradictory. Second our use of FLE,the
first local extremum avoids the problem how to define junk value when we do not
have a model to set equilibrium. Third our model is about the processes which gen-
erate order arrivals. These processes fill what is missing in the order flow analysis
of Lyon[1].
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Summary of price determination mechanism are as follows. Two sources generate
order arrivals; processes of the expectation revisions and of the retail transactions.
The arrivals are asynchronous. The retail transactions are not balanced concur-
rently. Dealers have heterogeneous expectations. So are their reservation prices.
Because of this heterogeneity, dealers as a whole absorb the unbalanced arrivals.
For a given amount of the unbalanced, how much price has to change determines
volatility. As the reservation prices are more dispersed, the required change becomes
larger. Volatility increases.

We identify causes of volatility change as follows. Volatility of transaction price
consists of two parts; the first one due to bid/ask spread and the second due to move-
ments of bid/ask levels. We approximate the change in transaction price volatility
by that of the bid rate. We derive bid rate’s stochastic properties. As the expecta-
tions become more heterogeneous, the volatility increases. The retail transaction’s
volume also influences volatility. The expectation revisions also influence volume
and volatility. Thus volume and volatility are endogenous. Correlation between
volume and volatility is variable. This variability is attributable to the effects of
the relevant factors as shown in Table (4) to (7). As for empirical applicability, our
model makes volume and volatility endogenous so that it is possible to reconcile
changing correlation between volume and volatility.

Features of our model are as follows: (i) We use stochastic processes of arrivals
of buyers and sellers to handle asynchronous order arrivals. (ii) We distinguish two
sources of order generations. (iii)We describe interactions between order arrivals
as the continuous time Markov transitions between the states of the market. We
derive an infinitesimal operator which governs Markov transitions so that it becomes
possible to find transition probabilities. (iv) The benchmark value which, for the
sake of dealer’s decision making, substitutes an expected equilibrium. (v) Our model
itself can be a mechanism for a dealer to form his own price expectation while taking
into account of distribution of others.’
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inventory column and row
N1 states numbers

ω(n− 1,−n + 1) (n− 1)2 + 1
n− 1 . . . . . .

ω(n− 1, n− 1) n2

ω(n,−n) n2 + 1
. . . . . .

n ω(n, 0) n2 + n + 1
. . . . . .

ω(n, n) (n + 1)2

Table 8: Market Inventory States and Their Locations in Q matrix For a
given N1 = n, there exist 2n + 1 of inventory states. ω(n, 0) is located (2n + 1)2−n
th row and column.

A Construction of Q Matrix

A.1 Locations of States in Q Matrix

For a given N1 = n, there are 2n + 1 states; R = −n . . . 0 . . . n. A set of inventory
states with N1 = n ends at (n + 1)2 textitthrow and column in Q matrix;and

Σn
j=0(2j + 1) = (n + 1)2 (48)

Their corresponding row numbers are as in table (8). Since N1 = 0, . . . , nd and
equation(48), the size of Q matrix is given by (nd + 1)2.

A.2 Values of Element of Q Matrix

Random variable R takes value between −N1 and N1. When the market is in
ω(0, 0), the only possible change is ∆N1 = +1; moving to ω(1, 0). Sojourn time in
state 0 has an exponential distribution with parameter θ0. since all of dealers are
state 0, there are nd of i.i.d. random variables. The intensity to exit is given by
ndθ0. Hence, Q(1, 1) = −ndθ0 and Q(1, 3) = ndθ0. All other elements on the first
row are zero.

Similarly the last row of Q have only two non-zero entry. The (nd + 1)2 th row
corresponds to ω(nd, nd). Only possible change is ∆R = −1. This takes place with
intensity of λs. Hence,

Q((nd + 1)2, (nd + 1)2 − 1) = λs (49)

Q((nd + 1)2, (nd + 1)2) = −λs (50)

Also when the market is in ω(nd,−nd), the only possible change is change of
∆R = +1. ω(nd,−nd) is located at Q((nd + 1)2, n2

d + 1). Hence,

Q((nd + 1)2, n2
d + 1) = λd (51)

Q((nd + 1)2, n2
d + 2) = −λd (52)
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R
even odd

even ω(n, r) ω(n, r)
N1 ω(n,−r + 2) ω(n,−r)

odd ω(n, r) ω(n, r)
ω(n,−r) ω(n,−r + 2)

Table 9: Pairs of Inventory States with Symmetric Densities Their densities
of X are line symmetric. The line of symmetry is x = 0.5. For given n, value of r
is such that −n < r

For cases of 0 ≤ N1 ≤ nd and R = ±n, there are only two cases of transition. For
example, ω(n, n) has varDeltaN1 = +1 or varDeltaR = −1. ω(n, n) is located
Q((n + 1)2, (n + 1)2). ω(n + 1, n) is located Q((n + 2)2, (n + 2)2 − 1).

Q
(
(n + 1)2, (n + 1)2

)
= λs (53)

Q
(
(n + 1)2, (n + 1)2 − 1

)
= λs (54)

Q
(
(n + 2)2, (n + 2)2 − 1

)
= nθ1 (55)

B Derivation of Heterogeneity Effect

We need to calculate, for a given m, n and r,

Pr(∆N1 = m− n)
∑

l 6=−m

(
µ(m, l)− µ(n, r)

)2

Pr(∆R = l − r) (56)

where −nd < m,n < nd We use normal distribution to approximate
Pr(∆R = l − r). For every m, equation (56) increases as α increases. It was not
necessary to Pr(∆N1 = m− n). The first term of equation (45) increases, as α
increases.

As for evaluating the second term, we use a pair of the symmetric µ(n, r)’s. As α
increases, µ(n, r)′s of equation (40) diverge from 0.5 over on S interval. The
symmetric pairs remain so. One of the following holds for applicable cases as listed
in Table (9).

µ(n, r) + µ(n,−r) = 1 (57)

µ(n, r) + µ(n,−r + 2) = 1 (58)

Also by assumption (a1), Pr(∆R = l − r) = Pr(∆R = −l + r). Among the
symmetric pair of µ(m, l) and µ(m,−l),(

µ(m, l)−µ(n, r)
)

Pr(∆R = l − r)

= −
(
µ(m,−l)− µ(n,−r)

)
Pr(∆R = −l + r) (59)
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