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   A factor-analytic model for discrete variables which represent frequencies is devel

oped. The model assumes that the frequencies are generated by the Poisson distribu

tion, in which the logarithm of the parameter of the distribution takes a similar form to 

the factor-analysis model for continuous variables. The latent variables in the model, 

which correspond to common factors in factor analysis, are assumed to have independent 

distributions with fixed parameters or a multivariate normal distribution with unknown 

correlations. The individual factor scores are integrated out from the model and 

factor-loadings in the sense of the generalized linear model are obtained by the marginal 

maximum likelihood method. Numerical examples of non-verbal intelligence tests are 

given.
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1. Introduction 

   The objective of this paper is to propose a factor-analytic model for two-way 

frequency tables of subjects by discrete variables. There exist various models 

which are applied to such two-way tables. One of them is the log-linear model (see 

e.g., Bishop et al., 1975). However, since the number of subjects may be as large as 

hundreds, it is not realistic to apply the log-linear model to these situations espe

cially when interaction terms are involved in the model. The log-bilinear model 

(also called RC association model or log-multiplicative model ; Goodman, 1985, 
1986, 1991) is the model in which the interaction terms in the log-linear model are 

parsimoniously structured in factor-analytic forms. 
   The subjects in the frequency tables are assumed to represest a random sample 

from a population, which is also a frequently used assumption in the factor-analysis 

model for continuous variables. Infrequency tables of subjects by variables (items, 

tests etc.), if the number of subjects increases, the number of the parameters 

concerning individuals (the nuisance parameters) increases proportionally (Clogg, 

1986). This paper deals with the estimation of the parameters of interest in such 

situations by a similar method to that of Bock and Aitkin (1981 ; see also Bock, 

Gibbons & Muraki, 1988), though the types of the response functions are different. 

   The multiplicative Poisson model for two-way frequency tables was developed 

by Rasch (1960/1980). In this model the frequency (e.g., the number of errors) for 

the i-th subject and the j-th test is Poisson distributed with the parameter A ,= eza;, 

where (3; stands for the difficulty of the j-th test and 0, denotes the inability of the 

i-th subject. Though in the original Rasch model subjects were not a random



sample, Rasch (1973) discussed a situation in which subejcts represent a random 

sample. The Rasch model in which subject parameters are random variables have 

been proposed in various ways (Bockenholt, 1993; Jansen, 1986 ; Jansen & Van 

Duijn, 1993; Ogasawara, 1996; Van Duijn, 1993). However, all of the extended 

models mentioned above assume a unidimensional latent variable. It is a natural 

extension to consider several latent variables in the frequency data. The multiple

factor models for dichotomous or polytomous variables have been developed by 

Christoffersson (1975), Muthen (1987) and Bock and Aitkin (1981). The factor

analytic model with multiple factors for frequency data will be proposed in the 

following sections. 

   The Poisson models or more widely item response models can be seen from the 

viewpoint of the generalized linear model (McCullagh & Nelder, 1989; Mellen

bergh, 1994). The generalized linear model assumes that a transformation (the so

called link function) of the expectation of a response variable is a linear function of 

parameters. For the ordinary factor analysis model for continuous variables, the 
link function is the identity function. For the logistic model for binary data, the 

link function is the logit function. For the Poisson model for frequency data, the 

link function is the logarithm. Since in the item response theory (IRT), the latent 

varibles representing abilities (factors) are involved, most of the models in IRT may 

be regarded as factor analysis models in the generalized sense. However, in the 

case of factor analysis, because latent factors which correspond to the independent 

variables in the generalized linear model, are generally unknown, the name of 

(generalized) bilinear model is more appropriate than that of linear model (see 
Kruskal, 1981 and Choulakian, 1996).

2. Model 

   Let q be the number of latent orthogonal-factors which represent different 

abilities. Here we use the terms, factor and factor-loading, in the generalized 

sense in the previous section. Let the values of the factors for the i-th subject be 

denoted by the vector O = (Oi 1, • • •, BZq)', (i =1, . • •, N), where N is the number of 

subjects. Let 8 =(o;i, •••, 8;9)", (j=1, •••, p) be the vector of factor-loadings for the 

j-th test, where p is the number of tests. Let the variable representing the count of 
the i-th subject and the j-th test be denoted by Xz,. Then, the probability that the 

count xz; occurs is assumed to be Poisson distributed with the parameter ,z;. That 

is,

P(Xz,=xz, I Oi, 8;)=A j'exp(-A j)/xz1!, (i=1, ... N ; j=1 ..., p). (1)

The Rasch model is the case when q is one and 2t,= Bi111j1• When q is greater than 

one, a natural extension of the Rasch model is

q 
S ~z;= E Oik8ik=O's;. 

      k=1
(2)



However, in the Poisson distribution the parameter iii; must be greater than zero. 

The model of (2) does not necessarily satisfy the condition, unless the regions of Oil, 

and (3;k are specified appropriately. Thus, we employ a modified model :

Aij=exp(ei/8j) (3)

in stead of (2). The models of (2) and (3) mean that the probability of Xi; =xi, is 

determined by the q latent-factors when 8, are given. Further we adopt an intercept 

parmeter u; in the following way:

Aij=exp (ei' 8,+uj), (4)

where u; represents the difficulty of the j-th test. This model is equivalent to the 

log-bilinear model when the intercept parameters for subjects are missing. Using 

(4), the equation (1) is described as

P (Xi,=xij I ei, 8&, ui) 
=exp{xij (0i' 8&+uj)}exp{-exp(0' 8,+uj)}lxij!, (5) 

(i=1,... N; j=1 ...,p).

The direct interpretation of Oi and 8, is possible in the same manner as the log

bilinear model (Goodman, 1985, 1986, 1991) :

In 'li'l'li', =(ei-ei)'(8 .i-8,). (6)   Eli';/Ai';

That is, the difference of two vectors of parameters is proportional to the log-odds

ratio of the rate of occurrence of events. 

   Let the elements of Oi be the random variables which represent the values of the 

factors for the i-th subject and h(ei) be the density of the factors at ei. For the 

orthogonal model, we assume that

9 

h(ei)= H gk(Oik). (7) 
          k=1

That is, the elements of Oi are supposed to be distributed independently of each 

other. However, the model of (5) cannot be identified without specifying the 

locations and dispersions of the factors unless other restrictions are imposed on 8., 

and u;. In the following, we assume identical distributions for eik, (k=1, •••, q), that 

is, gk(Oik)=g(eik), (k=1, ..., q) in (7). This situation corresponds to the one where 

the means and variances of latent factors in the factor-analysis model for continu

ous variables are arbitrary unless more than one population is considered. That is, 

even if the location and scale for a factor are changed, the equivalent model can be 

obtained by modifying the associated factor-loadings and intercept parameters 

appropriately. Consequently, the mean and variance for a factor are usually set to 

zero and one, respectively. To confirm this result, the mean and variance of Xi; are 

derived in Appendix in the case of the normal model for h(Bi).



3. Estimation of parameters for orthogonal model 

   It is possible to regard Bi, (i =1, • • •, N) as unknown and fixed parameters. This 

approach is not well suited to the case in which interest lies in the characteristics 

of a relatively small number of tests (or items in IRT), and a relatively large number 

of subjects are employed to obtain the information about those tests. The number 

of prameters to be estimated increases with the number of subjects, and complicates 

an understanding of the asymptotic properties of test parameter estimates. Thus, 

we use the method of marginal maximum likelihood (Bock & Aitkin, 1981), where 

ei, (i =1, • • •, N) are integrated out from the likelihood. Let 8;* be the vector of 
"unknown" factor -loadings in the j-th test and let

p=(pi, ..., fin)' and 8=(8*', ..., 8p')', (8)

then the parameters to be estimated are p and 8. Note that 8., may include known 

loadings in addition to those in 8;*. We set some of the factor-loadings to 

predetermined values and fix h(ei) so that the unidentifiability problem should be 
solved. Then, given the values of ei, (i =1, • • •, N), the marginal likelihood L* with 

the assumption of local independence, is described as

L*(8,1 I X)= II J x(aJ (II P(Xi,=xiiI ei, 8,, ,u3))h(ei)dei,                     i=1 j=1
(9)

where X={xi;}. Since it is difficult to obtain algebraically the result of the inte

gration in (9), we use rq lattice points, ymi0•••OO ymq, (mk=l, •••, r ; k=1, •••, q) in 
the independent q-dimensional density functions. We use the weight A(ymi) X ••• 
x A(ymq) for each lattice point at ym1, ..•, ymq, (Mk =l, -- r,; k=1, --•, q) which is 
constructed to approximate the continuous density function. Let L be an approxi
mation of the marginal likelihood L*, then

L*  L= II E ... E (II P(Xi0 =xij I y, 8j, ij))A(yml) x ... X A(ymq), 
             i=1 m1=1 mq=1 j=1

(10)

where y=(ymi, •••, ymq)". The estimates of 8 and pct are the values which maximize 

(10). Taking the logarithm of (10), we have
N 

l =lnL= In P(Xi=xi 18, ,), 
               i=1

where Xi=(Xi1, •••, Xin)', xi=(xi1, •••, xin)' and 

P(Xi=xi 18,1)_ r ... r (II P(Xi3=xij I y, 8s, ij)) x A(ym1) x ... x A(ymq). 
                            M1=1 mq=1 j=1

(11)

(12)

The maximization of 1, which is equivalent to the maximization of L, is performed 

by a kind of the EM (Expectation-Maximization) algorithm (Bock & Aitkin, 1981; 

Bock, Gibbons & Muraki, 1988; Dempster et al., 1977; Harwell et al., 1988). The 

gradient vector for the method is



P 

al aln II P(Xzj =xij I y, 8j, uj) 
aajk i=1 m1=1 mq=1 aajk 

      (II P(Xij=xij I y, 8, pi)) A(ymi) x ... x A(Ymq) 
       x j=1                  P(Xi=xi 13, lu) ' 

                                    (j=1, ..., p; k=1, ..., q)•
P 

                (II P(Xij=xij I y, 8j, uj))A(Ym1) x ... x A(Ymg) 
Let f(y I xi, 8,,g)= j=1 P(X i=xi 18, ,A) , then f(y I xi, 8, 
fit) is the posterior probability of y, given xi, S and 4u, where y is the vector of the 
scores of the latent variables at a lattice point. Using this, the above equation 
becomes

N r 
... r a{xij(Y'8j+uj)-exp(y'8j+uj)-lnxij!} f(Y I xi , 6, 1u) i=1 m1=1 mq=1 aajk 

   N r r 

= E E ...E {xij-exp(Y'8j+uj)}Ymkf(y I xi , 8, It). 
   i=1 m1=1 mq=1

(13)

Similarly,

al =Z Z ... E {xij-exp(y'3j+uj)}f(y I xi , 8, fu), (]=:l,---,P) d,Uj i=1 m1=1 mq=1
(14)

is obtained. 
   The equations (13) and (14) can be seen as those in the Poisson regression, if 

f(y 1 xi, 8, ju) are regarded as given weights. Though actually the weights f(y I xi, 
8, ju) have unknown parameters, 8 and ft, if we regard them as fixed values 
computed by temporary values of 8 and It, we have the information matrix as 
follows:

     -a27 N r r 
G E =11 11 .. 11 exp(Y 8j+uj)YmkYmk'f(Y I xi, 8, 1L),    aa

jkaajk• i=1 m1=1 mq=1     -a2, E( aa;kaaj'k -0, 
     -a27 N r r E( afljaa[jk / = Z ml-1...mE lexp(y'8j+uj)Ymkf(Y I xi, 

    -aal 
, E a

ujaa;,k =0, (j*1') 
   _ all N r r E( au, ~_E Z ... Z exp(Y'8j+uj)f(yI xi, 8, f-0,                   i=1 m1=1 mq=1 

2 

E a l =O, (j+j'), 

                                                    p ; k, k'=1, ..., q)•

(15)

The estimates of 8 and fu are obtained by Fisher's scoring method using (14) and (15) 
with f (y I xi, 8, p) as known values which are renewed in each iterative process by 
updated values of 8 and p. The iteration can be performed for each test j as



follows:

1 6*;l _ 8*;1  all 1 al  /L, ](i+1)-L uj Jci)+E(a(8*~, fL,)~a(8*'i,'Ui) )(0 C a(8*~, u,Y 1(0 (16)

where the subscript (i) indicates the values in the i-th iteration. In the standard 
EM algorithm, (16) is iterated to obtain the maximum of the likelihood with the 
fixed weights f (y I xi, 8, !i). However, the weights can be revised in each iteration 
before the maximum is attained 

   In the ordinary scoring method, the inverse of the information matrix computed 
by the converged values of parameters can be used as an estimator of the 
asymptotic variance-covariance matrix of the parameters. However, since in (15) 
the weights f (y I xi, 8, p) are regarded as if they were known, (15) cannot be used 
as the information matrix. Instead, we use the following matrix as an approxima
tion to the exact information matrix (Louis, 1982; Mislevy, 1984, 1985; Mislevy & 
Sheehan, 1988) :

   N r r dln(II P(Xii=xi.i I y, 8, p)) I = E I{ E ...E j=1 , , , f(y I xi, 8, !p)}    i=1 m1=1 mq=1 a(8 , u ) 

P 

      r r aln(fl P(Xi, =xi; I y, 8, p))   X { E ... E .J=1 f(y I xi, 8, p)J ] 
      M1=1 mq=1 a(8" u )

(17)

Using this approximation, the estimator of the asymptotic variance-covariance 

matrix is obtained as follows :

Cdv{(8' arc")"}=I-1 (18)

This is a method of estimating the standard errors of the parameters in 

confirmatory orthogonal factor models. When using a just identified exploratory 

factor analysis model with the assumption of the mutivariate normal distribution 

for factors, we can transform the estimated results by factor rotation. In this case, 

the information matrix (17) should be replaced by the augmented one (see, Silvey, 

1975) with appropriate restrictions for parameters (see e.g., Jennrich, 1974; Ogas

awara, 1998) in a similar way to that of the rotated solutions in usual factor 

analysis.

4. Oblique model 

   When latent factors are correlated, the oblique factor analysis model for 

Poisson variables is obtained. In the former sections of orthogonal model, no 

unknown parameter is involved in the density function of Oi. The distribution 

types of a factor in the one-factor model are not restricted to be normal : we will 

have a log-normal distribution and a uniform one in the numerical examples. On 

the other hand, for the model with correlated factors, we have the parameters for 

the covariances (correlations) among factors and assume that ei has the multi



variate normal distribution. 

   Suppose that the latent factors have zero means and unit variances, then the 

density of Oi is

h(ei I P)= (2Z)g12 I P I1~2 exp ( 2 ei'P-lei), (19)

where P={pij} is the correlation matrix of the factors. 

   Defining S and u in the similar way to the orthogonal case and p=(p21, P31, P32, 

  pq,(q-1)) the marginal likelihood L* of a=(8•, u•, p')' is

L*(a I X)= II J (II P(Xij=xij 18j, uj))h(ei I P)dei) i=1 R(0i) j=1 (20)

Since it is difficult to obtain algebraically the result of integration in (20), the 

approximation by lattice points is also used as in the orthogonal case. That is,

            N r r p 

L*  L= II E ... 21 (II P(Xij=xij l y, 8j, pi)) A(y I P), 
             i=1 m1=1 mq=1 j=1

(21)

where

A(y I P)=exp( 2 y'P-1 y)/ml...mZl exP( 2 y'P-ly)
        r r 

and i ... E A(y I P)=1. 
      M1=1 mq=1 

   The function to be maximized is 

N 

                   l=lnL=E1nP(Xi=xi I a), 
                                                           i=1

(22)

(23)

where

                         r r p 

P(Xi=xi I a)= Z ... (II P(Xij=xij I y, 8j, uj))A(y I P)• 
                      M1=1 mq=1 j=1

(2.4)

   The maximum is obtained by the EM algorithm in a similar way to the 

orthogonal case. The gradient vector with respect to 8 and u is similarly obtained 

as

al = Z ± ... ± {xij-exp(y'8j+uj)}ymkf(y I xi , a), ao k i=1 mI=1 mq=1 
                                             (>=1,...,P; k=1,...,q), 

al =21 ± ... ± {xij-exp(y'8j+uj)}f(y I xi ,a), (~=1, ..., p) a,Uj j=1 m1=1 mq=1

(25)

where

p 

         (II P(Xij=xij I y, 8j, uj))A(y I P) 
f(y I xi, a)= '_' P(X i=xi I a) (26)

is the posterior probability of y given xi and a. The gradient vector for pst(q > s



>t>1) is 

P 

       21 21 ... r (II P(Xij=xij I y, 8j, / tj))A(y I P) X alnA(y I P)    al     dPst i=1 m1=1 mq=1 P(XZ=xi a) apst 
        N r r alnA(y I P)      -= M1=1

mq=1 apst Ay I xi, a).

(27)

Using 

                                                  r r 

    dlnA(y I P) _ Z ... Z (p-lyy p-1)stexp  1 y'P-1y 
         apst -(P-1yy'P-1)st  m1=1 mq=1 2                                                            r r 

                                      m...mglexp  2 yp-ly                                211 
r r 

and 1] ... 11 f(y I xi, a)=1, (27) becomes 
      m1=1 mq=1

N r r exp( 2 y'P-1 y) Z Z ... Z (P-1 yy'P 1)st f (y I xi, a)  } i=1 m1=1 mq=1 Z ... Z eXp( y P ly2 )
(28)

   Suppose that f (y I xi, a) are given weights, the non-zero elements of the infor
mation matrix are obtained as follows:

E( -OZI -), (j P), 
  a(8j , Pj)'a(8j , /Ii ) 

 _ ... E  a21nP(Xij -xij I y, 8j, I-Lj) )f(Y I xi, a)     i=1 m1=1 mq=1 a(8j , iii) a(8j , Pi 
     N r 

 _ E       21 ... r 21 exP(y'8j+Pi)    i=1 m1=1 mq=1 Cyy 1 ]f(y I xi, a), (29)

    _ 2 N r r exp( 1 y'Ply , E( aps ap v ) Z mZ ...mZ (P-1yy'p-1)st a r r 2 _ 1 -1 /a)puv                                   m~1...mq 11 1eXP( 2 y P y) 
                                   (q?s>t>1; q>-u>v>1) 

   NmEl...mE (P 1 yy p 1)st(P 1 yy'p 1)uv exp( 2 y P-1y) 
                              r r 

                mZ1...mZ exp( 2 y P-ly) 
               r r      N m21 1..1 mE 1(P-lyy'P-1)stexp( 2 y'P-1 y)} 

r 

                           X fm r j1...mE1 (p-lyy'p-1)uvexp  2 y'P-1y)} 
               ~m~l...m±lexp(-2y'P ly)}2

30)

   The estimated values of the asymptotic standard errors are obtained from the 

inverse of



   N r r dlnt(II P(Xi.i=xi.i ly, ~' , i.i))A(y lY)t I  ~~ E ... j=1 as f(y I xi, a)~ 
     i=1 m1=1 mq=1 

    r r aln{(II P(Xii-xi.i I y, &j, j.i))A(y I P)}  X ~m71 ...m71 .i=1 ad f(y I xi, a)}] (31)

in the similar way to the orthogonal case.

                       Table 1 

Contents of tests and result of factor analysis for continuous variables



5. Numerical examples 

   Two data sets, Tests A/C (N=1,495) and Test B (N=1,493), will be used for 

numerical examples. These data consist of the numbers of errors in the subtests 

for the non-verbal intelligence tests for adults. The data were used by Ogasawara 

(1992, 1996) who showed the appropriateness of the Poisson model for these data. 
Table 1 contains the contents and descriptive statistics of the discrete variables. 

Though product-moment correlations are not appropriate for describing the associ

ations among the discrete variables, they are provided as auxiliary information. 

Table 1 shows also the rotated results of usual factor analysis for continuous 

variables assuming a two-factor exploratory model, where the likelihood of the 

parameters using the multivariate normal distribution was maximized instead of 
ordinary Wishart likelihood for comparison with the AICs (Akaike Information 

Criterion ; Akaike, 1973) of the Poisson models.

     Table 2 

Results of Tests A/C

   Several Poisson models with orthogonal factors have been constructed con

sidering the following points : (1) the number of latent factors (one or two), (2) the 

intercept parameter u; (with or without it), (3) the types of the distributions of Bz 

(uniform, normal or log-normal), and (4) the number of lattice points in each



dimension of latent factors (five or ten). 

   Table 2 gives the results for Tests A/C. The one-factor models have been 

obtained by assuming a uniform distribution with mean zero and unit variance 

which is approximated by five points y'=(-1.414, -.707, 0, .707, 1.414) with cor

responding weights= (.2, .2, .2, .2, .2). For the approximated normal distribution for 

each factor for Model a21, y'=(-2, -1,0,1,2) with weights = (.054, .244, .403, .244, 

.054) were used. Table 2 also contains the results of confirmatory oblique models, 

where two factor-loadings were set to zero, which satisfies the identification of the 

model. The five lattice points (-2, -1, 0, 1, 2) were employed in each dimension of 

oblique factors with weights computed by (22). 

   The large difference of the values of the AICs of Model a12 with intercept 

parameter and Model all without it indicates the advantage of introducing the 
intercept parameter for the data. The estimated values of pj seem to correspond 

to the values of M in Table 1, which can be interpreted as the difficulty of a task. 

The loadings of the factor I in Model a12 correspond to the variation caused by 

individual differences (Var-M in Table 1) in the data with overdispersion (the case 

when Var> M ; see e.g., Van Duijn, 1993). 

   For the orthogonal Model a21, the initial factor-loadings with 812 fixed at zero 

were rotated by the normalized varimax method. The rotated loadings of Model 

a21 accompany their standard errors, which were obtained by the augmented 

information matrix for the maximum likelihood estimator with restrictions. The 

ratios of the loadings of the factor I to those of the factor II are relatively large 

except for that of Subtest C1. On the other hand, only Subtest Cl has a large 

loading in the factor II. This result may come from the fact that the value Var

M of Subtest Cl in Table 1 is extremely large compared to M. In the oblique 

models, a3l and a32, the large values of the loadings for Subtest Cl correspond to 

those in the orthogonal models.

           Table 3 

Results of one-factor model for Test B



   The results of factor analysis assuming the multivariate normal distribution for 

the observed discrete variables give the large value of AIC for Tests A/C (Table 1). 

In the rotated factor pattern (Table 1), the second factor has a large loading only for 

Subtest A2, which is different from the result of the Poisson model a21. The 

standard errors of the loadings for A2 (Table 1) are also large. Further, the 

estimated value of the uniqueness for A2 is negative (Heywood case), which indi

cates inappropriateness of the ordinary factor analysis for the data.

           Table 4 

Results of two-factor model for Test B

   For the usual factor analysis assuming the multivariate normal distribution for 

response variables, the estimated values of factor loadings depend only on the 

sample variance-covariance matrix of manifest variables and are independent of



their means. Though the value of Var-M in Subtest Cl, for which the large 
loadings were obtained by the Poisson model, is the largest among the subtests, the 

value Var (5.62) is not the largest. The difference of the factor patterns between 

the Poisson and normal models is emphasized by these data properties. 

   Table 3 shows the results of one-factor models for Test B. Model 811 has no 

intercept parameter and gives a large value of AIC. Although the number of 

lattice points in Model 813 (y'=(±1.567, +1.219, ±.870, ±.522, ±.174) with 

weights=(.1, .1, •••, .1)) is different from that of Model 812, the estimated values of 

the factor-loadings and intercept parameter are similar. In Model 814 the standar

dized normal distribution for the factor is assumed. Model 815 employs a skewed 

distribution with mean zero and unit variance based on the log-normal distribution 

using the values, lnl, ln2, 1n3, ln4 and ln5 (y'= (-1.354, -.502,.351, 1.203, 2.055), with 

weights=(.185, .344, .248, .144, .079)). The estimated values are fairly similar to 

each other among Models 812, 813, 814 and 815. 

   Table 4 gives the results of the two-factor models. The results of Model 821 

show that the two subtest-groups (B1, B2, B3) and (B4, B5, B6) are obtained. It is 

interesting that the two groups also correspond to the grouping of the number-right 

scores for these subtests which were obtained by the factor analysis for continuous 

variables (Ogasawara, 1990). The rotated factor-pattern in Table 4 appears stable 

when compared to the estimated values of the standard errors. Model 831 is a just 

identified oblique model. Model 832 is the model in which two additional loadings 

were set equal to zero, where the increase of AIC from that of Model 831 is 

observed. 

   In the case of Test B, the result of factor analysis for continuous variables 

(Table 1) is similar to that of the Poisson model 821 with the difference of the 

pattern for Subtest B2. However, judging from the values of the estimated stan
dard errors of the factor loadings in Table 1, the results of Table 1 appear more 

unstable than those in Table 4.

6. Discussion 

   The results of Table 3 show that the estimated values of the parameters do not 

depend so much upon the assumptions of the types of the distributions of factors, 

which has also been indicated for the results of IRT models by Bock and Aitkin 

(1981) and Bartholomew (1988). We conjecture that this is one of the robust 
characteristics of the marginal maximum likelihood estimation in latent-variable 

models. 

   The method for estimating the correlations of latent factors was developed for 

our Poisson model. But, in the case of ordered categorical variables (dichotomous 

or polytomous variables), the method for estimating the correlations among factors 

have been developed by Christoffersson (1975), Muthen (1978) and Lee, Poon, and 

Bentler (1990, 1992, 1995). These are mostly based on the method of generalized



least squares or partitioned maximum likelihood. Our method is based on the full 

information marginal maximum likelihood, though numerical integration is used. 

In the case of ordered categories our method may not have practical advantage. 

However, it is to be noted that in principle our method can be applied to any types 

of distributions for response variables as are used in the generalized linear model.

                          Appendix 

The marginal mean and variance of the Poisson variable in the orthogonal model 

   In order to confirm the identifiability of the model of (5), we derive the marginal 

mean and variance of Xij. If we assume the exchangeability of the orders of 

integration and summation,

              00 
1    E(Xij)= xZ R(B.xijeXP(xijAij)exp{-exp(~ij)J XI h(ei)dei 

                           0. 

          f(e.exp(Aij)(xijE0=o exp{(xij-1)Aij}exp{-exp(Aij)} (xii 11)~ h(01)dOi 
   = f exp(Bi'8j+pj)h(ei)dei, (i=1,---,N; j=1, ..., p) (Al) 

                 R(B ) 

is obtained, where R(01) is the region of integration with respect to 0j. Similarly, 

we have 

   E(Xij(Xij-1))= f exp{2(Bi'8j+uj)}h(0i)dei, (i=1, ... N; .j=1 ..., p). 
                           Rya, 

                                           (A2) 

As an example of actual expression of h(9i), we derive the results for the case when 

01k is independently and normally distributed as N(vk, 6k), (k =1, --•, q). 
From (Al) and (A2), 

  E(Xij)=exP(/Uj) Ih f (2~)l Z 6k exp{ _ (ez 26k k)2 + eik(jk}deik 
        =exp} Uj + 2 (vk8jk + 6kZ ik (i=1, ..., N ; j=1, ..., p), (A3) 

and 

   Var(Xij)=E(Xij(Xij-1))+E(Xij)-{E(Xij)}2 

         =exp(2uj)k 11 f (2 /26k exp} (ee 26k k)2 +2Oikojk}dOik 
          +E(Xij)-{E(Xij)}2 

          =exP{2(uj+ E1(vkVjk+6kU3k))}+exp(Pj+ ~1(kik v U+ 6 U~k// 
              9 ( 6k( 1jk ) ) } (A4)               -eXP 2(/uj+ q

1 vkajk+ 2 (i=1, ... N; j=1 ..., p), 

follow. If we consider the reparametrization from(L)k, 6k) to (vk, 6k) such that vk=



vk
bkak and 6k= bk with arbitrary ak and bk(bk>0), the values of E(X0;) and 

                                E a, bk d;k and (3;k= bk are used as new Var(XZ;) are still unchanged when ~;=u; I 

parameters replacing uj and 8;k, respectively. This indicates that the location and 
dispersion of the distribution of Oik are indeterminate. Thus, we assume vk=0 and 

6k =1, (k =1, --•, q) without loss of generality. For this case, we have 

                     ~41 

   E(XZ;)=exp(Uj+ k 2 
and 

q S 
                                9 Uik 9   Var(Xii)=exp{2(pj+ Elo;k)}+exp(P;+ k 2 )-exp(2u;+ E1 (3;k). (A5)
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