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Abstract

In this paper we study a relaxation for the multiple-choice knapsack
problem. In the literature the linear programming relaxation is utilized for
solving the problem, however, the relaxation does not work in a particul_af
case where the profit is equal to the weight on all items. Focusing on this
issue, an attempt is made to develop another relaxation which will work

especially in the hard case.
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1 Introduction

The Multiple-Choice Knapsack (MCK, for short) problem was proposed by
Nauss [10], and the problem has been intensively studied in the last two
decades. The classical 0-1 knapsack problem (KP, for short) is to pack
items into a knapsack of weight limit so that the total profit of the packed -
items is maximal. Furthermore, on MCK, all items are split into several
classes so that any pair of the classes is mutually disjoint, and we should
select just one item in each class respectively. The MCK is formulated as

follows:

(239]
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maximize 37 3 5.z, (1)
ieM jeN;
subjectto 37 3 yx; < ¢ (2)
iEM jeN;
2 zi=1i€M (3)
jeN;
Tij € {091}’ 1€ M) ]E Nis (4)
where M = {1, 2,...,m}, and the m (> 2) indicates the number of classes.

As mentioned previously, any pair of the classes N; ( i € M) is mutually
disjoint. Throughout this paper we call the constraint (3), which is peculiar
to MCK, multzible-choice constraint. In addition the profit p; and weight w;;
of any j-th item in any class V;, and the capacity ¢ are positive integers.

Without loss of generality we will assume that

> minw; < ¢, 2, maxwi; > ¢, and >, mln{w,,|max pit > ¢

ieM jeN; ieM JEN,; ieM

in order to exclude an infeasible problem, a trivial problem and a problem

solvable in linear computing time for optimality, and that

Wij + Z min Wi <c
keM,k+i ‘N

for any i, j in order to exclude an unpromising item. In addition on the

;|, we will assume that

the maximal cardinality of the classes is greater than two, because MCK can
be reduced to KP not in the case.. Also in [10] the following theorem, which
is a little modified, is presented. It is efficient to reduce MCK (see Sinha
and Zoltners [12], TABLE II in p.511).

Theorem (Nauss) If p;; > pljz and w;;, < w;;, holds, then z;;,= 0 in any optimal
solution to MCK.

Proof. Assuming an optimal solution in which z;;,= 1, we can show a con-
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tradiction to the optimality by replacing z;;, = 0, z;, = 1 with z;; = 1,

z;,= 0 in the solution, keeping the feasibility. i

~ In what follows, by this theorem, we will assume that there exist no two
items so that each of them has the same weight in each class.

On MCK, the linear programming relaxation (also called continuous
relaxation) in which the integrality constraint (4) is relaxed, that is, replaced
with 0 < 2;; for all 4, j is well-used. We call the resulting problem Linear
MCK (LMCK, for short) problem. In the literature, e.g. [12]}, Armstrong et
al [1]2, Dyer et al [6], Dudzinski and Walukiewicz [4], and Pisinger [11]3, the
LMCK is utilized for solving MCK. The following proposition is efficient to
reduce LMCK.

Proposition (Sinha and Zoltners) Assume that p; < pj;, < py, and wy; <
wi, < wi,. Py, — pij ) wis, —wy,) < (b, — pij )/ (wsj, — wi;) holds, then
z;, = 0 in any optimal solution to LMCK.

Proof. See [12].

From this if follows that the optimal solution of LMCK consists of the only
item which forms an upper convex boundary in each class (see [11], Fig. 1 in
p.396). Hereafter we assume for simplicity that all items are sorted in
ascending order of the weight in each class respectively so that
w1 <w;2<-+- for any tEM.

On LMCK, after excluding unpromising items by Proposition, we know
that finding an optimal value is equivalent to finding an optimal slope
8= (g j+1— Pis)/ (w; j+1 = wyj) satisfying W + wy; < ¢ < W + w; ;+1, where

W =X p+i {wp 1 | ming, >, sul. If there exists no slope greater than or

In p508, the bg+1in Step 3 should be replaced with p,+ 1.

“In p.189, the plg) in Step 6 should be replaced with Plg), and the 1- z, p,+1
in Step 7 should be replaced with 1 -z, pyg)+1.

3In p.397, the W+w;; >c in Step 2 should be replaced with W+w;; —w; ;-1 >c.
Also, in p.401, the {1,....[;} in Step 5 should be replaced with {1,...,4;}.
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equal to s; in some class IV, then we take wy,; in the class for W. Once the

optimal slope is found, the optimal value is easily gained as

+ Dii(Wtwiju1— ) +pijri(c— W—wy)
Wijr1— Wij ’

(5)

min s k,}
Sk 28ij

b [Pk,m

k#i

where the first term is the one that w is replaced with p in W. Here we
would like to add that, as pointed out in [10], the Lagrangian  dual problem
(see Fisher [7]) of MCK in which the constraint (2) is dualized, that is, relaxed
by placing it into the objective function (1) is equivalent to LMCK. Namely
the optimal Lagrange multiplier is corresponding to the optimal slope.

On KP, it is wellknown that a particular condition onto the items
induces a catastrophic behavior of the methods for KP (see, e.g. Chapter 4 in
Martello and Toth [8]). The KP with the condition is especially called.
subset-sum problem in which there exists only one type of item to be packed

into the knapsack. Here, on MCK, we consider the condition, ie.
pi; = wy; foralli € M, j €N, ' (6)

Hereafter we call the case where the condition (6) holds on MCK subset-sum
case. In the subset-sum case, no efficient upper bound is derived from
LMCK since the optimal value of LMCK is just ¢, which is similar to the
behavior of the Dantzig upper bound for KP (Dantzig [2]. Moreover, in
such a case, no item can be fathomed by Nauss’ Theorem. Therefore the
reduction of MCK in order to gain a more small-sized and equivalent
problem is not effective. Thus the methods hitherto proposed for MCK will
no doubt show poor performance in the subset-sum case. For instance,
computational experiments of applying a recent method to the MCK with (6)
are presented in [11].

On the other hand, Dyer [5] solves LMCK by means of the dual problem
of it. By the duality theorem, however, it should also produce an optimal

value egual to a capacity in the subset-sum case. Here we would like to
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add that the dual problem is equivalent to the Lagrangian dual problem
dualized (2) as pointed out in [4] (see each definition of »(MD) and v (ML ().
Roughly speaking, for MCK, the linear programming relaxation, the Lagran-
gian dual problem and the dual problem are the same each other. In Section 2
we will present a unique relaxation for MCK, and dig up its characteristics.

In the final section we discuss two topics for future research.

2 Another relaxation for MCK

In this section we first present a constraint equivalent to the multiple-choice
constraint (3) in the MCK (1)—(4), and second present a relaxation based on
the equivalent constraint.

In the formulation of MCK, except (4), only the multiple-choice constraint
is not of a form including ;e Zjen. Then we devise a constraint of such

a form:

ar—1
7
. 7)

Note that d > 2 as mentioned previously. The equivalency between the

2 > ditlx,; =, whered = max |Ny|, »=

ieM jeN;

constraint (3) and (7) in MCK is proved as follows (we show only (7) = (3))

Proof. We assume that the hypothesis holds in the case where m = k. In

the case where m = k + 1, suppose that X; e n,.,Zz+1; = 0. Then
d-1)+dd-1) ++ d*'d-1)=d"-1< d*

Therefore we should take at least one item in the class Np;.
Also suppose that Xjen,,, Zz+1; = 2. Then, on Nj, Ns,...,N;+1, the

sum of &’ ' for 1 < i < k+1is
k_
1+d+d* +-+dt = Z_ll +d* < 2d* - 1< 2d".

Hence we cannot take two more items.in Np+ 1. |
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By this, we have another formulation Qf MCK as follows:

maximize 3 3 p .z

ieM jeN;
subject to 7 S 0 < ¢
ieM jeN;
dm—1 (8)
2 2 d 7y =r, d=max|N]|, r=
i€eM jeN; ieM d—1

Zi; € {0,1}, leMjeM :
Now we present a relaxation for MCK by (2)+(7):

maximize >0 by
ieM jeN;

subject to > > witd Hx; <c+r

ieM jeN;

2 2xi=m

i€M jeN;

Zij € {0,1}, ZE M ]E Ni’

where the d and 7 are the same as those in (8) respectively. This problem is
a KP with an additional constraint on the cardinality of an optimal solution.
Although the additional constraint has been hidden behind (7) so far, it
should be made explicit, the reason for which will be showed afterward.

In the subset-sum case, the problem (9) will be a hard instance of KP in
which the profits and weights are strongly correlated. Moreover the prob-
lem (9) is not tractable in recent computer systems even if a 64-bit processor,
because the numerical data appeared in (9) are too large, especially. the d” is.
The size of a problem tractable by our relaxation will be at most d = m = 10
in a 32-bit processor. Still, in the subset-sum case, the problem (9) seems to
be better than LMCK since the profit-to-weight ratio of the items is not con-
stant. In the following we provide several tiny subset-sum examples

(m =2, d=23) to observe how our relaxation behaves.
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Example 1. Let wy; = 2, w1 = 5, wiz = 6in Ny, wo; = 3, wog = 5, waz = 8
in Ny, and ¢ = 12. .
In this example the capacity is ¢ + 1 + d = 16. Then an optimal value
11 less than ¢ is favorably gained by 212 = z;3 = 1 and other z;'s are
zero (also gained by z13 = 292 = 1 and other z;;’s are zero). We remark
that if we exclude the constraint on the cardinality of an optimal
solution, an optimal value 13 is obtained by z;; = 212 = 23 = L.
Here is an additional remark that, in the case where the two classes are
exhanged, an optimal value 13 is obtained by z;2 = 233 = 1. Our
relaxation thus depends on the order of classes. Moreover this implies
that our relaxation will produce a problem of an optimal value greater
than a capacity in some cases.

Example 2. Let wy; = 5, wyp = 10, wiz = 18 in Ny, wo; = 4, wee = 11, was
= 16in Ny, and ¢ = 24
The capacity is 28, and an optimal value 23 is gainéd by xli =213 =1
In the case where the two classes are exchanged, an optimal value 22 is
gained by 711 = 225 = L.

Example 3. Let wi; = 1, wis = 4, w13 =5In Ny, wop = 1, wes = 3, wo3 = 6
inNg,and ¢ = 7.
The capacity is 11, and an optimal value 9 is obtained by 212 = 213 = 1.
In the case where the two classes are exchanged, the same optimal

value 9 is obtained by x5 = 713 = L

As implied by Example 3, the problem (9) will not work in the case where
both the m and d are even large, because we can select items of fairly large
weight from V;'s of small 7 without exceeding the enlarged capacity. Thus
our relaxation is not practical in general, however, at least it shows that
there exists a relaxation which will produce a problem of an optimal value
not equal to a capacity against the subset-sum case, ivn contrast to the linear

programming relaxation.
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3 Notes

In this section we would like to add two topics: First, we present a
constraint also equivalent to the multiple-choice constraint, which is formu-
lated as follows:

1 gr—1

art d—1"

With this constraint we can consider a relaxation for MCK by the same way

> > % = ¢/, where d = max |Ni|, » =
i€EM jeN; ieM

as the one for (7), however, the resulting problem will have the same defects
as {9). Moreover the problem will have still another defect in exchange for
the intractability, i.e. the accuracy of computing.

Second, we can also consider Lagrangian relaxation for the MCK (8) in

which the constraint (7) is dualized:

z(A) = max Z Z Py — /ldi—l).l’ij +2Ar

Z  ieM jeN;

subject to 2, 2 wizy < ¢ 10

ieM jeN;

Zij S {0,1}, 1 € M, ]6 Ni,

where A is a Lagrange multiplier without requirements. This problem is a
KP, however, it will tend to be a hard instance especially in the subset-sum
case. Recently an efficient algorithm for a hard KP was developed by
Maftello and Toth [9], and it will be promising to solve (10) when [A]|<1.

On the problem (0) how we find an appropriate A so that it makes z(2)
small, which is an issue we should address. Note that it should be best to
find a A which minimizes z(2) if possible, whereas the resulting problem is
not tractable in the recent computer systems in the case where || is large.
From a practical point of view, it is preferable that |i|«1. Also, in the
event that the problem (10 with an appropriate 4 does not give a tight upper
bound for MCK, the constraint on the cardinality of an optimal solution,”
which is appeared in (9), would be helpful to improve (10)."
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