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1. Introduction 

   In factor analysis we have various rotation methods. Most of them are based 

on analytic criteria h(B) for a rotated loading matrix B(p x q), where p is the 

number of observed variables and q the number of common factors which may or 

may not be orthogonal. In these cases, unrotated loadings are frequently recaled 

with weights for observed variables. One of the most popular weights is that of 

Kaiser's (1958) normalization. In the statistical packaged programs such as SAS 

(SAS Institute Inc., 1990), SPSS (SPSS Inc., 1990) and BMDP (Dixon, 1992), Kaiser's 
normalization is employed as the default value for the option of normalization for 

observed variables when factor rotation is performed. In the case of Kaiser's 

normalization, unrotated loadings are divided by the square roots of the com

munalities of the corresponding observed variables. The rotated loadings are 

denormalized, that is, multiplied by the square roots of the corresponding original 

communalities. 

   The derivation of the asymptotic standard errors for rotated loadings with 

Kaiser's normalization becomes more involved than that without the normalization. 

Ogasawara (1996, 1999) derived the asymptotic standard errors for the orthomax 

and direct oblimin solutions with Kaiser's normalization. There are based on the 

asymptotic distribution of the estimators with restrictions for rotated parameters 

satisfying some analytical rotation criteria under the assumption of a multivariate 

normal distribution for observed variables. The general forms of the restrictions 

for rotated parameters were obtained by Archer and Jennrich (1973) and Jennrich



(1973) for orthogonal and oblique rotations, respectively. 
   In behavioral sciences, exploratory factor analysis is usually applied to stan

dardized observed variables. That is, sample correlation matrices are used as 

input data instead of sample variance-covariance matrices. The standard errors 

of rotated solutions in such cases have been derived by Jennrich (1974) and Ogasa

wara (1998b; see also 1998a) for the cases of orthogonal and oblique rotations, 

respectively, by using the restrictions given by Archer and Jennrich (1973) and 

Jennrich (1973). These methods have been used for deriving the standard errors of 
rotated parameters with Kaiser's normalization (Ogasawara, 1996, 1999). The 

standard errors for rotated parameters with Kaiser's normalization have also been 

obtained by using the method of numerical derivatives (Browne & Du Toit, 1992; 

Cudeck & O'Dell, 1994). 

   Kaiser's normalization can be treated as one of the cases with weights for 

observed variables in factor rotation. Among the weights other than Kaiser's one, 

we have Cureton and Mulaik's (1975) weigths which are functions of the loadings of 

the first principal factor. In addition, as a simple method of practical use, the 

method of selecting observed variables which are included for a rotation criterion 

may be used. In this method, the values of the weights are unities for the variables 

which are included in the rotation criterion and zeros for other variables. In the 

case of Kaiser's normalization, the weights are the reciprocals of the square roots 

of communalities. 

   The purpose of this paper is to derive the general results for the restrictions for 

rotated loadings and factor correlations with weights for observed variables. As 

an application of the results, the exact asymptotic standard errors of the oblique 

varimax solution (Crawford, 1975; Browne & Du Toit, 1992) with Kaiser's normali

zation will be derived.

2. Restrictions of Parameters and their Derivatives in Orthogonal Rotation 

   With the assumption of orthogonal common factors, the covariance structure 

for unstandardized observed variables is described as

X=BB'+ ?I1, (1)

where B is a rotated loading matrix; ZF is the diagonal matrix with the diagonal 

elements being the variances of unique factors; and E is the variance-covariance 

matrix for observed variables. The corresponding covariance structure for stan

dardized observed variables is

.Z=DPD=D(BB'+Diag(Ip-BB'))D, (2)

where B(px q) is the rotated loading matrix for standardized observed variables; 

D=diag(dl, ..., dp) is the diagonal matrix with the diagonal elements d1, (i=1, ..., p) 
being the standard deviations of unstandardized variables; P is the population



correlation matrix of observed variables; Diag(• ) denotes the diagonal matrix 

whose diagonal elements are those of the matrix in parentheses; Ip is the p x p 

identity matrix. As is well known, we have a rotational indeterminacy in the 

exploratory factor analysis model, which is removed by imposing (q2-q)/2 restric

tions for a loading matrix. The matrices B in (1) and B in (2) are assumed to have 

these restrictions. As was previously mentioned, the general form of the restric

tions was derived by Archer and Jennrich (1973). However, their method is based 

on implicit differentiation and is not a simple one. So, here, Ogasawara's (1998b, 

Corollary 1) derivation using usual Lagrange multipliers is shown as the following 

lemma. 

   Lemma 1 (Archer & Jennrich, 1973; Ogasawara, 1998b). Under the model of (1) 

with associated assumptions, let h1(B) be a rotation criterion to be optimized by B, 

then the restrictions for B are

(B' ahi(B)  a z1(B) B)rs=0, (q? r >s>1), (3)

where (• ),-s stands for the (r, s)th element of the parenthesized matrix. 

   Proof. Given an unrotated loading matrix A(p x q), the rotated loading matrix 

is B=A T, where T (q x q) is the transformation matrix satisfying T' T =Iq. Let 

L1 be a symmetric matrix consisting of Lagrange multipliers, then B is obtained 
from the optimization of the following function with respect to L1 and T:

fi=hl(B)-(1/2)tr{L1(T'T -Iq)}. (4)

Taking the differential of fl with respect to T, we have

dfi=tr( a h1(B) dB) -tr(L1 T'dT ) 
 =tr{( a a1(B)A-L1T')dT}.

(5)

Since the partial derivatives of fl with respect to T must be zero,

ahl(B)A -L1T'=0 (6)

is obtained. Post-multiplying (6) by T, we have

ah1(B) B =L 1.  aB' (7)

From (7) and L1 L1'= O, (3) follows. El 

   It is obvious that B can be replaced by j3 in Lemma 1. Let W be a diagonal 

matrix with the diagonal elements being the weights for observed variables, that is

W =diag(wl, ..., wp), (8)

where wi is the weight for the 1-th observed variable. For instance, in the case of 

q Kaiser's normalization, wi =1l ci , where ci = with i3ij= (B)i;. For the 
                                                                 =1



method of selecting observed variables for a rotation criterion, wi is 1 or 0 depend

ing on inclusion or exclusion of the i-th observed variable with respect to the 

criterion. With W of (8) the unrotated loading matrix becomes WA, which is 

rotated to

F=WAT (9)

by the transformation matrix T. The rotated loading matrix is followed by the 

denormalization which gives B=AT. Note that the optimization is not in terms 

of B, but of F, though F is a function of B. 

   The restrictions for the rotated loadings with the weights W for observed 

variables are given by the following theorem. 

   Theorem 1. In the case of orthogonal rotation, let hi*(F) be a function to be 

optimized by F with associated assumptions in (9), then the restrictions for the 

rotated loadings are

girl-(r, _ a (F) r)rs=0, (q > r > s 1), (10)

   Proof. Replacing B and hl(B) by F and h*(F), respectively, in Lemma 1, we 

have (10). F] 

   Under the assumption of multivariate normality, the asymptotic covariance 

matrix for the maximum likelihood estimators with restrictions can be obtained in 

the following way. Let 0(t x 1) be a vector of t parameters with u restrictions 

represented by g(6)= 0(u x 1). Then, the maximum likelihood estimator 0 is 

given by maximizing the following log Wishart likelihood

in L=-(n/2){lnX+tr(X-'S)}+const. (11)

with the restrictions g(0) = 0, where n + 1=N is the number of observations and S 

is an unbiased sample covariance matrix. The asymptotic covariance matrix for 

6 is obtained as the submatrix I* of the inverse of the augmented information 

matrix IA (see e.g., Silvey, 1975):

     I(0) ag'/a6 I* # I
A = a

g/a0' 0 = # # ,
(12)

where 1(0) is the information matrix with respect to 0 whose (i, j)th element is 

E(-a21nL/aoia8,) with Oi=(0)ii, (i=1, ..., t); and #'s denote matrices which will not 

be used. In the case of the model represented by (1), 0 consists of the non-fixed 

parameters in B and zP , while for the model of (2) the elements of 0 are the non
fixed parameters in j_3 and D. The vector g(0) is given by (10) which is expressed 

by the parameters and arranged in a vector with u=(q2-q)/2 elements. 

   The matrix 1(0) is easily obtained (see e.g., Jennrich, 1974, p. 125, p. 129), while 

ag(e)/a6' depends on the form of g(0) or h*(F). Ogasawara (1996, p. 124) derived 

ag(e)/a6' for the orthomax solution with Kaiser's normalization. Here, we derive



ag(o)/ao' for the general case of rotation criteria with Kaiser's normalization. Let 

P 7(i)" be the i-th row of F, then F'ahl*(F)/ar= L T(i)ahl*(F)/ay(i)'. Noting that 

4 7ij(I')ii=aijl =aijl /~/Jik2, we have 
                                   b_1

agl rs      =(Ai,-Ai, ),, , (i=1, ..., p; r, s, j=1, ..., q; r>s), aaij (13)

where

AZ,=a(r ahal(r) )/a81 
    a7(i) ahl*(F)    +r, a2hl*(r) 

    a31 ayi,, araai; 

     1 (
ei  7(i)Yij) ahi*(1') +I,, a2h1*(F)                 a7

u) araai;

(14)

with e; being the q-dimensional vector whose j-th element is one and others zero. 

The second term in the right-hand side of (14) can also be described as

           r, a2hi*(F) ayik 1, a2h1*(F) _        21   araa
i; k=1 ara,ik a,8 ii 

             r, 02 hl*(F) (aki Yik7i.i)              k=1 ara;'ik C1 

         =F' a2h1*(r) 1 _ F' a2hl*(F) YikYi.i                ara
k=1 War ik 'V Ci

(15)

where akj is the Kronecker delta. The expression of (15) may be useful in some 

cases since it is described only by F and ci. 

   For the orthomax rotation with Kaiser's normalization,

hl*(F)= 4 Z { Y  w(E Y)2}, ij ii 
               j=1 i=1 p z=1

(16)

where w is the weight for the orthomax rotation. In this case, we directly use (14) 

instead of (15): the partial derivatives in (14) are

a ~y r)  Yuv (Z1 Ydv) Yuv _W P (17)

and from (17)

( a2hl*(F)) = a2hi*(F)   araai; uv aYuvaai; 

        f ~. P                Uui 3Yuv W Z Yav _ 2w Yivyuv aYzy , 
                                    a=1 a, ij

(i, u=1, ..., p; J, v=1, ..., q).

(18)

From (17) and (18), (Ai)rs in (14) is



(A0)rs-{Y s w,~(~ 7") Yis} orj Yir7ij                 P a=1 ci 

                    EP p 12       + 7ir 3 y3s  w E 72as  2 w 7is L YarYas ~sJ  Yis7ij'       f P a=1 P a=1 (19)

(q>r>s>1).

From (19) and (Az1)rs=(Aij)sr, agirsla,3ij in (13) is obtained. Though this result gives 

the same value as that of Ogasawara (1996), (19) is described only by r and ci, and 

is simpler than that of Ogasawara (1996) where B is used.

3. Restrictions of Parameters and their Derivatives in Oblique Rotation 

   The covariance structures for unstandardized and standardized observed vari

ables with obliquely rotated common-factors are

I=BOB'+ iF, Diag0=Iq, (20)

and

I D(BOB'+Diag(Ip-BOB"))D, DiagO=Iq, (21)

respectively. The equations (20) and (21) correspond to (1) and (2) with orthogonal 

rotation, respectively. The matrix D is equivalent to that for orthogonal rotation. 

The p x q loading matrices B and j3_ and obliquely rotated ones. The q x q 

matrices 0 and 0 are factor correlation matrices. 

   For oblique rotations, q2-q restrictions are required for the exploratory factor 

analysis models (20) and (21) to be identified. We have two kinds of optimization 

criteria for oblique rotation, i.e., those for B(B) (direct method) and for 

BO(B6)(indirect method). Since presently the direct method is usually used, only 

the direct one will be dealt with. (For the standard errors of obliquely rotated 

parameters given by the indirect method, see Ogasawara, 1998b.) The general 
form of the restrictions for obliquely rotated parameters by the direct method was 

derived by Jennrich (1973). Because Jennrich's derivation involves implicit 
differentiation as was the case for Archer and Jennrich (1973) and is rather compli

cated, we show the result using Lagrange multipliers derived by Ogasawara (1998b, 

Corollary 2) as the following lemma: 

   Lemma 2 (Jennrich, 1973; Ogasawara, 1998b). Let h2 (B) be an optimization 

criterion for B in (20), then the restrictions for B and 0 are

(B, ah2((B) 0-1)rs=0, (r, s=1, ..., q; r*s). (22)

   Proof. Let A be an unrotated loading matrix for orthogonal common factors 

and T be a transformation matrix for oblique rotation. Then, the obliquely 

rotated loading matrix B=AT'-1 is obtained by optimizing h2 (B) with respect to 

B subject to Diag(T'T)=Iq. Let L2(q x q) be a diagonal matrix with the diagonal 

elements being Lagrange multipliers, then B is given by optimizing the following f2



with respect to T and L2:

f2=h2(B)+(1/2)tr{(T'T -Iq)L2}. (23)

Taking the differential of f2 with respect to T,

df2=tr{ 8h 2(B) dB} +tr(L2 T'dT ) 
  =-tr{ a a2BB) AT'-1(dT')T'-1}+tr(L2T'dT) 

  = -tr{( T-'A' 8h2( B) T-' L2 T')dT }
(24)

follows. Since the partial derivatives of f2 with respect to T are zero, we have

B' ah2(B) T-1= L2 T'. (25)

Post-multiplying (25) by T (T' T)-1= TI-1

B' ah2(B) 0-'= L2   aB (26)

follows. Because L2 is a diagonal matrix, (22) is obtained. 0 

   Obviously, B and 0 in (22) can be replaced by f3 and c in Lemma 2. Let W 

be a diagonal matrix with the diagonal elements wi, (i=1, ..., p) being weights for 

observed variables as was the case for orthogonal rotation. For Kaiser's normali

zation, wi =1 / ci where

      ~ q ~q1 Ci=(B~l/B')ii=EL.i/ ij0 k/3 , (Z=1, ..., p), 

                          

.i=1k=1

(27)

with y5,k=(O);k, (j, k=1, ..., q). In a manner similar to the case of orthogonal 

rotation,

T = WA T'-1= WB (28)

is defined. 

   The restrictions for obliquely rotated parameters with the weights W for 

observed variables are obtained as the following theorem. 

   Theorem 2. Let h2 *(F) be an optimization criterion of F for oblique rotation 

with the weights W in (28), then the restrictions for an obliquely rotated solution are

g2s=(I' aha *             (F 1)rs-0' (r, s=1, ..., q; r$s). (29)

   Proof. Replacing B and h2(B) by F and h2*(F), respectively in Lemma 2, (29) 

follows. 0 

   Let 0 be the vector of the non-fixed non-duplicated parameters in B (or B), 0 

(or (b) and P (or D), then the asymptotic covariance matrix of the estimates of the 
parameters can be obtained as I * in (12) with the restrictions g(0)= 0, where the (q2 

 q) x 1 vector g(0) is composed of the elements of (29). The information matrix



I(0) for unstandardized observed variables is given by various literatures (e.g., 

Joreskog, 1969, p. 189), while 1(0) for standardized observed variables is described 
in Ogasawara (1998b, Appendix 5). The partial derivatives of (29) with respect to 

/3 and ski with Kaiser's normalization are derived as follows:

ag2rs = Z ag2rs a y i k a
,3ij k'-1 ayik a/`1 ij 

   _(ah2 (r) 0.1 ayir + " (r, a2h2*(r) 1 1 ayik 
         ar )is a/Jjj k=1 arayik irs a,3ij

(i=1,...,p; r,s,i =1,...,q; r*s),

(30)

where

ayiu 1 {8
ju yi,W )ijI ai8ij  Ci (31)

and

ag2rs = Z ag2rs ayik _ (r, ah2*(r)-1(Ief + Ife)-1 1 
a5ef i=1k=1 ayik aq5ef ar rs 

   _ ~( ah2*(r) 0-1) .s ayir + i (r" a2h2*(r) 0-1 1 ayik 1 
       i=1 ar Z aY'ef k-1 arayik )rs a9'ef 

     _(r, ah2*(r) 0-1)rr(orws+arfY'eS),
(r, s, e, f=1, ..., q; r$ s; e>f),

(32)

where

ariu /3i, aci _ 
 ,~ 3/2   I iuyieyif, aY~ef 2Ci a~ef

Ief is the matrix whose (e, f)th element is one and others zero; and ifs=(0-1)fs.

(33)

4. Standard Errors for the Rotated Solution with the General Symmetric 

   Family of Quartic Criterion with Kaiser's Normalization

Based on Crawford and Ferguson's (1970) rotation criterion:

      A 
~2 q K1~~I3e/~z:f+K221L/9i 3,2k, 

   e*fi=1 i$.ik=1
(34)

Jennrich (1973) proposed a generalized rotation criterion:

2 

4h2(B)=k1Z EN 1 I+k2Z(11 +k3l (Za1 I2                  i-1j=1 i=1 j=1 j=1 i=1 

           A q 

     + k4 1] Y. 4         a . 
                i=1j=1

(35)

The criterion (34) is equivalent to that of the orthomax rotation when the weight in 

(16) is

w=pK2/(K1+K2) (36)



(Crawford & Ferguson, 1970). The criterion (35) is equivalent to (34) when

k1=0, k2=K1, k3=K2, k4=-(K1+K2), (37)

and is equivalent to the oblimin criterion when

k1=-71p, k2=1, k3 = y/p, k4 = -1, (38)

where y is the weight for the oblimin rotation. The equation (37) was first incor

rectly introduced by Jennrich (1973, p. 599). The correct equation was given by 

Clarkson and Jennrich (1988, Table 1), although the equation for the covarimin 

method has still typographical errors: k3= -1 /p and k4=1 in their Table 1 should be 

k3=1/p and k4=-1. The criterion (35) was later called the general symmetric 
family of quartic criterion (Clarkson & Jennrich, 1988). In orthogonal rotation the 

added usefulness of (35) is unknown (note that (34) is equivalent to that of the 

orthomax rotation). On the other hand, in the case of oblique rotation, by employ

ing (34) as a special case of (35) we can use criteria other than the oblimin ones. 

One of the examples of practical use is Crawford's (1975) criterion for his primary 

parsimony rotation method whose special case is called the oblique varimax method 

(Browne & Du Toit, 1992). The primary parsimony method minimizes (34) with K1 
and K2 which correspond to w in the orthomax criterion (see (36)). For instance, w 
=1 for the varimax method corresponds to K1=p-1 and K2=1 (i.e., k1=0, k2=p-1, 

k3=1, k4=-p). For the parsimax rotation in the orthomax family, w=p(q-1)/(p 

+q-2) corresponds to K1= p -1 and K2 = q -1. Consequently, when q=2, the 

oblique varimax criterion becomes equivalent to that of the oblique parsimax 

method, while in orthogonal rotation the varimax method is equivalent to the 

equamax method (w=q/2) when q=2. Note that the oblique varimax method does 

not maximize (16), but that it minimizes (34) with K1=p-1 and K2=1 . In case of 
oblique rotation, these two optimization criteria are different, while they are 

equivalent in orthogonal rotation. 

   The primary parsimony rotation method usually gives less oblique rotated 

factors than the oblimin method with y=0 (the quartimin method) (see Crawford, 

1975, Tables 4 and 5) and seems to be relatively free from the non-convergence 

problem which frequently occurs for the oblimin method with positive y (Jennrich, 
1979). The primary parsimony method can be used easily by replacing the 

coefficients of the cubic equation to be solved in the direct oblimin method with 

other appropriate ones (Clarkson & Jennrich, 1988). 

   The restrictions and their derivatives with respect to obliquely rotated parame

ters when the general quartic criterion (35) is used were given by Jennrich (1973) for 

the case without Kaiser's normalization. In this section, the derivatives will be 

given for the case with Kaiser's normalization. Replacing B and h2(•) in (35) by r 
and hz (• ), the derivatives of h2*(r) in (30) and (32) with respect to r are

ah2*(r)         = yuvMuv, (u =1, ..., p; v a7 uv (39)



where

          p q 
~41 P Muv=k1i yab+k2L~7ub+k311 yav+k4yuv, 

             a=1b=1 b=1 a=1
(40)

and

a2 h*(   2 r = a
uiwkMik + yik aMik 0y

11ayik ayuv 
         auiUVkMik +2 yik7uv(k1 + k211 iu+ k3akv+ k4aiuakv),

(u, i=1, ..., p; v, k=1, ..., q).

(41)

From (39), (40) and (41), the derivatives (30) and (32) become

a92 'S = Z l yikMiky~ks ayzT +(yirMikOks+2k1Yik(r I'O-1)rs 
a3ij k=1 aaij 

     +2k2yikyir(['0 )is+2k3)ik(P 1 )rkt ks+2k4y?kyiroks) a7 (,
(i =1, ..., p; r, s, .7 =1, ..., q; r * s),

(42)

and

a 2  q yikMikybks 87ir +(yirMikoks+2klyik(r I'(P-1)rs   ZE l                 80,f 

     +2k2yikyir(r~ 1)is+2k3yik(r 1 )rkoks+2k4yikyirq5ks) a a0
f 

        yiryikMikokr(areOfs + arfcbeS)),

        p; r, s, e, f=1, ..., q; r+s ; e>f),

(43)

respectively (see also Jennrich, 1973). Replacing ag(e)/ae' in (12) by (42) and (43) 

and taking the inverse of the augmented information matrix, we have the 

asymptotic covariance matrix of the estimators of the obliquely rotated parameters 

with Kaiser's normalization.

5. Numerical Examples 

   Numerical examples are based on two real correlation matrices and an 

artificial data set. In each example, an exploratory factor analysis model for 

standardized observed variables is assumed (see (2) and (21)). One of the real 

correlation matrices is that of eight physical variables (Harman, 1976, p. 22, N= 

305), where a two-factor model is assumed. The other is the correlation matrix of 

twelve psychological tests (Harman, 1976, p. 401, N=355), where a three-factor 

model is assumed. The artificial data (Ogasawara's 1999 Data B) are based on the 

following assumed estimates of loadings of orthogonal factors with the assumption 

of N=300,

       

.8 .8 .1 .4.3.01 1
1"= 

       
.4.3.01 .8.8.1



The oblique varimax method was employed for each example. Tables 1-3 show 

the estimates of rotated loadings and factor correlations with their estimated 

asymptotic standard errors. Tables 1 and 2 contain simulated results, which have 

been obtained as follows. First, the correlation matrices which had been construct

ed by estimated parameters were regarded as population covariance matrices. 

Under the assumption of multivariate normality, random observations of the sam

ple size equal to the real ones were generated. Based on these generated data, the 

parameters in the models were estimated by the maximum likelihood method 

followed by the oblique varimax rotation. There remained indeterminacies of the 

signs and permutations in the columns of rotated loading matrices, which were 

removed by choosing the loading matrices closest to the corresponding population 

ones. This procedure was repeated 1,000 times and we had 1,000 estimates for each 

parameter. The S's in Tables 1 and 2 indicate the standard deviations of these 

estimates.

                    Table 1 
Oblique varimax solution for eight physical variables (N=305)

   The simulated values are close to the theoretical ones, which shows the accu

racy of the theoretical values. The standard errors of the parameters with Kaiser's 

normalization are not so different from those without Kaiser's normalization, which 

corresponds to the fact that the estimates of the parameters in the two models are 

similar. However, we see that some of them are different both in theoretical and 

simulated values (e.g., Table 1, Variable 5, Factor I ; Table 2, Variables 11 and 12, 

Factor I). Table 3 shows the results for the artificial data, where the results by 

simulation are not included since the artificial data, in which some of the com

munalities are very small, gave frequently non-convergent cases in simulation. 

From Table 3 we see that by Kaiser's normalization the standard errors of the 

estimates of the loadings for the variables with small communalities become small 

while the standard error of the factor correlation becomes extremely large. This
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suggests that when we have large differences in communalities, not only the esti

mates of factor loadings, but also their standard errors may substantially change by 

employing Kaiser's normalization.

             Table 3 

Oblique varimax solution for artificial data

6. Discussion 

   In the first section, the weights wi =1, 0 were mentioned. For this case the 

function to be optimized by rotated solutions are constructed from the loadings for 

the variables with wi =1. The derivatives of the restrictions with respect to the 

loadings for the variables with wi=0 are set equal to zero. (Note that the informa

tion matrix should be provided for all parameters.) For the variables with wi =1, 

Kaiser's normalization may be imposed if necessary. 

   In the first section, Cureton and Mulaik's (1979, p. 187) weight was also 

mentioned. Their weight wi for the i-ith variable is a function of the loading of the 

first principal factor written as

wi=f(211), (i=1,...,p), (44)

where Ai1=(A)il. These weights have a practical advantage in that they give a 

simple pattern to the data such as Thurstone's box problem to which the varimax 

method does not. However, presently this method is not used so often and the 

usefulness of the standard errors of the rotated results with the weights is unknown. 

Nevertheless, from a theoretical point of view, the weights are of interest. In 

Kaiser's normalization r was described as a function of B or that of B and 0. 

With the weights wi in (44), r is a function of B and A, or a function of B, 0(= 

T'T) and A. Therefore, the set of parameters for which the information matrix is 

to be constructed should contain both unrotated and rotated ones. Ogasawara 

(1998a) derived the information matrix by using the reparameterization of covarian
ce structures, mhich is described in the following way for standardized observed 

variables;



I =D(ATB'+Diag(Ip-11TB'))D. (45)

By using the above method, the asymptotic standard errors of the rotated results 

with Cureton and Mulaik's (1975) weights may be derived.
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