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ON THE STANDARD ERRORS OF ROTATED FACTOR LOADINGS
WITH WEIGHTS FOR OBSERVED VARIABLES

Haruhiko Ogasawara*

The asymptotic standard errors of the estimates of rotated factor loadings and
factor correlations are derived for the cases with weights for observed variables such as
those for Kaiser's normalization. The factor analysis models employed in this paper
are the exploratory ones which have orthogonal or oblique common factors and unstan-
dardized or standardized observed variables. The asymptotic standard errors are given
from an augmented information matrix. As an application, the result for the direct
ablique rotation by general quartic criteria with Kaiser’s normalization is derived. The
results of simulation show that the theoretical standard errors are close to simulated
ones.

1. Introduction

In factor analysis we have various rotation methods. Most of them are based
on analytic criteria 4(B) for a rotated loading matrix B(pxg), where p is the
number of observed variables and g the number of common factors which may or
may not be orthogonal. In these cases, unrotated loadings are frequently recaled
with weights for observed variables. One of the most popular weights is that of
Kaiser’s (1958) normalization. In the statistical packaged programs such as SAS
(SAS Institute Inc., 1990), SPSS (SPSS Inc., 1990) and BMDP (Dixon, 1992), Kaiser’s
normalization is employved as the default value for the option of normalization for
observed variables when factor rotation is performed. In the case of Kaiser’s
normalization, unrotated loadings are divided by the square roots of the com-
munalities of the corresponding observed variables. The rotated loadings are
denormalized, that is, multiplied by the square roots of the corresponding original
communalities.

The derivation of the asymptotic standard errors for rotated loadings with
Kaiser’s normalization becomes more involved than that without the normalization.
Ogasawara (1996, 1999) derived the asymptotic standard errors for the orthomax
and direct oblimin solutions with Kaiser’s normalization. There are based on the
asymptotic distribution of the estimators with restrictions for rotated parameters
satisfying some analytical rotation criteria under the assumption of a multivariate
normal distribution for observed variables. The general forms of the restrictions
for rotated parameters were obtained by Archer and Jennrich (1973) and Jennrich
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(1973) for orthogonal and oblique rotations, respectively.

In behavioral sciences, exploratory factor analysis is usually applied to stan-
dardized observed variables. That is, sample correlation matrices are used as
input data instead of sample variance-covariance matrices. The standard errors
of rotated solutions in such cases have been derived by Jennrich (1974) and Ogasa-
wara (1998h; see also 1998a) for the cases of orthogonal and oblique rotations,
respectively, by using the restrictions given by Archer and Jennrich (1973) and
Jennrich (1973). These methods have been used for deriving the standard errors of
rotated parameters with Kaiser's normalization (Ogasawara, 1996, 1999). The
standard errors for rotated parameters with Kaiser’s normalization have also been
obtained by using the method of numerical derivatives (Browne & Du Toit, 1992;
Cudeck & O'Dell, 1994).

Kaiser’s normalization can be treated as one of the cases with weights for
ohserved variables in factor rotation. Among the weights other than Kaiser’s one,
we have Cureton and Mulaik’s (1975) weigths which are functions of the loadings of
the first principal factor. In addition, as a simple method of practical use, the
method of selecting observed variables which are included for a rotation criterion
may be used. In this method, the values of the weights are unities for the variables
which are included in the rotation criterion and zeros for other variables. In the
case of Kaiser’s normalization, the weights are the reciprocals of the square roots
of communalities.

The purpose of this paper is to derive the general results for the restrictions for
rotated loadings and factor correlations with weights for observed variables. As
an application of the results, the exact asymptotic standard errors of the oblique
varimax solution (Crawford, 1975; Browne & Du Toit, 1992) with Kaiser’s normali-
zation will be derived.

2. Restrictions of Parameters and their Derivatives in Orthogonal Rotation

With the assumption of orthogonal common factors, the covariance structure
for unstandardized observed variables is described as

X=BB+¥, (1)

where B is a rotated loading matrix; ¥ is the diagonal matrix with the diagonal
elements being the variances of unique factors; and >} is the variance-covariance
matrix for observed variables. The corresponding covariance structure for stan-
dardized observed variables is

Y =DPD=D(BE +Diag(l,— BB))D, (2)

where B(px g) is the rotated loading matrix for standardized observed variables;
D=diag(d,, ..., d») is the diagonal matrix with the diagonal elements 4., (=1, ..., p)
being the standard deviations of unstandardized variables; P is the population
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correlation matrix of observed variables; Diag( ) denotes the diagonal matrix
whose diagonal elements are those of the matrix in parentheses; [, is the pXp
identity matrix. As is well known, we have a rotational indeterminacy in the
exploratory factor analysis model, which is removed by imposing (¢*— g)/2 restric-
tions for a loading matrix. The matrices B in (1) and B in (2) are assumed to have
these restrictions. As was previously mentioned, the general form of the restric-
tions was derived by Archer and Jennrich (1673). However, their method is based
on implicit differentiation and is not a simple one. So, here, Ogasawara’s {1998b,
Corollary 1) derivation using usual Lagrange multipliers is shown as the following
lemma.

Lemma 1 (Archer & Jennrich, 1973; Ogasawara, 1998b). Under the model of (1)
with associated assumptions, let £;{ B} be a rotation criterion to be optimized by B,
then the restrictions for B are

( 5 O(B) _ oh(B)
oB 0B’

B) —0, (g=r>s=1), (3)

where { « ), stands for the (r, s)th element of the parenthesized matrix.

Proof. Given an unrotated loading matrix A(p X ¢), the rotated loading matrix
is B=AT, where T(gXgq) is the transformation matrix satisfying 777 =1/, Let
L, be a symmetric matrix consisting of Lagrange multipliers, then B is obtained
from the optimization of the following function with respect to [, and 7T

A=h{B)— /2t { L (T T — 1)} (4)
Taking the differential of # with respect to T, we have

dfi=t (0131(3) dB)~te( L T'dT)

oB’ )
—ur|( P A pi1)ar ),
Since the partial derivatives of # with respect to T must be zero,
MAB) 1, 1'=0 )
is obtained. Post-multiplying (6) by 7', we have
olséB) B=1I. 7

From (7) and 7.,— L,'= 0O, (3) follows. []
It is obvious that B can be replaced by B in Lemma 1. Let W be a diagonal
matrix with the diagonal elements being the weights for observed variables, that is

W =diag(uw, ..., wp), (8)
where w; is the weight for the ;-th observed variable. For instance, in the case of

q
Kaiser’s normalization, w;=1/Jc;, where ¢;=3 5% with g,;=(B);. For the
=1
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method of selecting observed variables for a rotation criterion, w; is 1 or (0 depend-
ing on inclusion or exclusion of the j-th observed variable with respect to the
criterion. With W of (8) the unrotated loading matrix becomes W/, which is
rotated to

I'=wWAT (9)

by the transformation matrix 7°. The rotated loading matrix is followed by the
denormalization which gives B=A7. Note that the optimization is not in terms
of B, but of I, though [ is a function of B.

The restrictions for the rotated loadings with the weights W for observed
variables are given by the following theorem.

Theorem 1. In the case of orthogonal rotation, let /,*(I") be a function to be
optimized by I with associated assumptions in (9), then the restrictions for the
rotated loadings are

_{0RFT)  ORF() _ .
glrs*(r a]—v a[" F)rs_o’ (027>521)» (10)

Proof. Replacing B and /. (B) by I and 4F(]"), respectively, in Lemma 1, we
have (10). [

Under the assumption of multivariate normality, the asymptotic covariance
matrix for the maximum likelihood estimators with restrictions can be obtained in
the following way. Let @(fx1) be a vector of  parameters with # restrictions
represented by g(#)=0(xx1). Then, the maximum likelihood estimator @ is
given by maximizing the following log Wishart likelihood

In L=—(n/2){InX +tr(X7'S)} +const. (11)

with the restrictions g(8)=0, where n+1=AN is the number of observations and S
is an unbiased sample covariance matrix. The asymptotic covariance matrix for
@ is obtained as the submatrix 7* of the inverse of the augmented information
matrix 7, (see e.g., Silvey, 1975):

I.'=

19) ag’/ae}l_[ I #} (12

oglod O it

where /(@) is the information matrix with respect to @ whose (z, j)th element is
E(—-3*InL/30,00;) with §,=(8),, (i=1, ..., 1); and #'s denote matrices which will not
be used. In the case of the model represented by (1), @ consists of the non-fixed
parameters in B and ¥, while for the model of (2) the elements of @ are the non-
fixed parameters in B and ). The vector g(@) is given by (10) which is expressed
by the parameters and arranged in a vector with y#=(g"—¢)/2 elements.

The matrix 7(@) is easily obtained (see e.g., Jennrich, 1974, p. 125, p. 129), while
0g(6)/66 depends on the form of g(8) or K. Ogasawara (1996, p. 124) derived
og(8) /0@ for the orthomax solution with Kaiser’s normalization. Here, we derive
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0g(8)/0@ for the general case of rotation criteria with Kaiser’s normalization. Let
P
7w be the i-th row of I', then I"34*(I")/oI = X 7dm*(I") /3y’ Noting that
fa
Tij(P)ij:Bz‘j/\/C_i:,Bij/\/ ;}Bii, we have
%:(Aw—flﬁ’)m, (=1, ., 0, 7,5, 7=1,...,q; v >5), (13)

where

A= a( o (F ) )/aﬂu

_ v 0/11 () X (I) (14)
a}gu 87(1 (?F@Bu

1 VOME) | e (L)

—s/C_i(eJ T Y/ 07 +1I' a]"agu

with e; being the g-dimensional vector whose j-th element is one and others zero.
The second term in the right-hand side of (14) can also be described as

azhl*(l”) _ g I 321’!1*([') 37’{1«

I orags & " orova 98,
_ & M) (B — i)
=207 o5y «E (15)
:]—v “zh ( ) 1 I'v azhl (F) sz?’u

ooy 1/CZ k=1 oI 07u x/C, ’

where §;; is the Kronecker delta., The expression of (15) may be useful in some
cases since it is described only by I and c¢..
For the orthomax rotation with Kaiser’s normalization,

* 1&[& 4 wi& 2y
mHD= B -2 5y, (16)
where w is the weight for the orthomax rotation. In this case, we directly use (14)

instead of (15): the partial derivatives in (14) are

Bhik(F): 3 7&( 2 2
a)’uv Yuv P Elyaz,‘)’)'uv (17)

and from (17)

(%ot )™ Gyt

s (a,p WS z>_27w _ }am

{6uz<37’uv j)agl?'av b Yivyuwo aBu
(i, u=1,....p 7, v=1, ..., q)

From (17) and (18), (A;),s in (14) is

(18)
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w, & Orj— iryii
(Az'j)rs: 7’?3*’7’(2 7’4228)71‘6 M‘L
a=1 .

ol Ve
. ) & Qw & Osi— YisYis (19)
+{ yzr(d yh—4s ;ffzs)— s 20 YaTYaS}*J I8
pao b a=1 Je: !
{(g=r>s>1).

From (19) and (A7) ,s=(A:)sr, 0g175/05:; in (13) is obtained. Though this result gives
the same value as that of Ogasawara (1996), (19) is described only by I" and ¢;, and
is simpler than that of Ogasawara (1996) where [3 is used.

3. Restrictions of Parameters and their Derivatives in Oblique Rotation

The covariance structures for unstandardized and standardized observed vari-
ables with obliquely rotated common-factors are

3 =BOB + ¥, Diag®=1,, (20)
and
3 =D(BOB +Diag(l,— BOB))D, Diagd=1,, (21)

respectively. The equations (20) and (21) correspond to (1) and (2) with orthogonal
rotation, respectively. The matrix D is equivalent to that for orthogonal rotation.
The px g loading matrices B and B and obliquely rotated ones. The gxg
matrices @ and @ are factor correlation matrices.

For oblique rotations, g% — g restrictions are required for the exploratory factor
analysis models (20) and (21) to be identified. We have two kinds of optimization
criteria for oblique rotation, i.e., those for B(AH) (direct method) and for
BO(B@)(indirect method). Since presently the direct method is usually used, only
the direct one will be dealt with. (For the standard errors of obliquely rotated
parameters given by the indirect method, see Ogasawara, 1998b.) The general
form of the restrictions for obliquely rotated parameters by the direct method was
derived by Jennrich (1973). Because Jennrich’'s derivation involves implicit
differentiation as was the case for Archer and Jennrich (1973) and is rather compli-
cated, we show the result using Lagrange multipliers derived by Ogasawara (1998b,
Corollary 2) as the following lemma:

Lemma 2 (Jennrich, 1973 ; Ogasawara, 1998b). Let /; (B) be an optimization
criterion for B in (20), then the restrictions for B and @ are

(B’iah;(BB) Q)‘l)rszo, (r,s=1, ..., 4 r*s). (22)

Proof. Let A be an unrotated loading matrix for orthogonal common factors
and T be a transformation matrix for oblique rotation. Then, the obliquely
rotated loading matrix B=/7""" is obtained by optimizing %, (B) with respect to
B subject to Diag(7T ' T)=1,. Let L.(qXq)be a diagonal matrix with the diagonal
elements being Lagrange multipliers, then B is given by optimizing the following £
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with respect to T and L.
fo=h(B)+Q/2te{( T T —1,)L:}. (23)
Taking the differential of £, with respect to T,

dfi=t { 6hao B3) dB}+tr(Lg T'dT)

oB
= —urf WAB) A a1 T (L T T (24)
——tef( T 2B - ar ]

follows. Since the partial derivatives of f; with respect to T are zero, we have

O/lz(B)

BT =LaT. (25)
Post-multiplying (25) by T(T'T)'=T®™,
ahgj(gma)‘ L. (26)

follows. Because [, is a diagonal matrix, (22) is obtained. []

Obviously, B and @ in (22) can be replaced by B and @ in Lemma 2. Let W
be a diagonal matrix with the diagonal elements w,, (i =1, ..., p) being weights for
observed variables as was the case for orthogonal rotation. For Kaiser’s normali-
zation, w,=1/c¢; where

g g
c:=(BOB)= E z::lﬁuquk/gik' (i=1,...,p), (27)
with ¢;=(D)su, (7, 2=1,...,q). In a manner similar to the case of orthogonal
rotation,
I'=WAT '=WB (28)
is defined.

The restrictions for obliquely rotated parameters with the weights W for
observed variables are obtained as the following theorem,

Theorem 2. Let 4#(I") be an optimization criterion of " for oblique rotation
with the weights T/ in (28), then the restrictions for an obliquely rotated solution are

gzrsZ(F 0/13;F) o~ )m:(}, (r,s=1,....q, ¥¥5). (29)
Proof. Replacing B and %,(B) by I' and k,*(I"), respectively in Lemma 2, (29)
follows. [
Let @ be the vector of the non-fixed non-duplicated parameters in B (or B), @
(or @) and ¥ (or D), then the asymptotic covariance matrix of the estimates of the
parameters can be obtained as [/* in (12) with the restrictions g(8)= 0, where the (g*
—¢g)x1 vector g(@) is composed of the elements of (29). The information matrix
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(@) for unstandardized ohserved variables is given by various literatures (e.g.,
Joreskog, 1969, p. 189), while 7(@) for standardized observed variables is described
in Ogasawara (1998b, Appendix 5). The partial derivatives of (29) with respect to
Bi; and ¢, with Kaiser’s normalization are derived as follows
&ngs: 4 ngrs a?’ik
aBU k=1 a?’zk aﬂw

) 1) Iy & ( FhT) g ) o (30)
( o 2 ) an, AN ey v 9B
(i=1,...0 .5, 7=1,...,q; r+s),

where
Oy 1 y
084 Ja{ﬁJu yal I @)} (31)
and
Qngs L O%ars OYir Ay oho* (F) 3 AI)
DI N (oo e+ 1007)
£ 8[12*(F) _1 07:7‘ 82112*(F) _1) a}’,’h
7:1{( )zo aqﬁef + 2-—-1( aF&)’fk ¢ rs 3¢ef} (32)
< 8h2 _l>”(87’e¢fs+ 8rf¢es),
(r.s, e, f=1,...,q, v¥s, e>f),
where
a)’iu o Biu ac; ey
a(ﬁef = 90372 Oder — T YwYieYirs (33)

I, is the matrix whose (e, f)th element is one and others zero; and ¢*=(@ )

Standard Errors for the Rotated Solution with the General Symmetric
Family of Quartic Criterion with Kaiser’s Normalization

Based on Crawford and Ferguson’s (1970) rotation criterion

K12 ZB BZ‘}+K22 Zsz hs

(34)
Jennrich (1973) proposed a generalized rotation criterion
nog 2 2 pil q  \2 q q 2
4h2(3):k1(§§&j) +k2§(§ f,-) +/e3§(i=215?j)
J (33)
g s

The criterion (34} is equivalent to that of the orthomax rotation when the weight in
(16) is

= pK:/(K\+ K3) (36)
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(Crawford & Ferguson, 1970). The criterion (35) is equivalent to (34) when
k=0, ke=Ki, ba=K>, bs= — (K, + K2), (37)
and is equivalent to the oblimin criterion when
ki=—7lp, k=1, ks=7/p, ki=—1, (38)

where y is the weight for the oblimin rotation. The equation (37) was first incor-
rectly introduced by Jennrich (1973, p. 599). The correct equation was given by
Clarkson and Jennrich {1988, Table 1), although the equation for the covarimin
method has still typographical errors: k= —1/p and k,=1 in their Table 1 should be
ks=1/p and k,=—1. The criterion (35) was later called the general symmetric
family of quartic criterion (Clarkson & Jennrich, 1988). In orthogonal rotation the
added usefulness of (35) is unknown (note that (34) is equivalent to that of the
orthomax rotation). On the other hand, in the case of oblique rotation, by employ-
ing (34) as a special case of (35) we can use criteria other than the oblimin ones.
One of the examples of practical use is Crawford’s (1975) criterion for his primary
parsimony rotation method whose special case is called the oblique varimax method
(Browne & Du Toit, 1992). The primary parsimony method minimizes (34) with &,
and K, which correspond to  in the orthomax criterion (see (36)). For instance,
=1 for the varimax method corresponds to Ki,=p—1 and K,=1 (i.e., /=0, ba=p—1,
ks=1, ks==—p). For the parsimax rotation in the orthomax family, w=p(q —1)/(p
+q—2) corresponds to Ky=p—1 and K,=g—1. Consequently, when ¢=2, the
oblique varimax criterion becomes equivalent to that of the oblique parsimax
method, while in orthogonal rotation the varimax method is equivalent to the
equamax method (w=¢/2) when ¢=2. Note that the oblique varimax method does
not maximize (16), but that it minimizes (34) with K;=p—1 and K>=1. In case of
oblique rotation, these two optimization criteria are different, while they are
equivalent in orthogonal rotation.

The primary parsimony rotation method usually gives less oblique rotated
factors than the oblimin method with y=0 (the quartimin method) (see Crawford,
1975, Tables 4 and 5) and seems to be relatively free from the non-convergence
problem which frequently occurs for the oblimin method with positive y (Jennrich,
1979). The primary parsimony method can be used easily by replacing the
coefficients of the cubic equation to be solved in the direct oblimin method with
other appropriate ones (Clarkson & Jennrich, 1988).

The restrictions and their derivatives with respect to obliquely rotated parame-
ters when the general quartic criterion (35) is used were given by Jennrich (1973) for
the case without Kaiser’s normalization. In this section, the derivatives will be
given for the case with Kaiser's normalization. Replacing B and 4,(+) in (35) by I
and %¥(-), the derivatives of A,*(I") in (30) and (32) with respect to [" are

ah;(r)

= M, (=1, b =1, 0), (39)
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where
p q 7 p
M=l z} E} 7’2& -+ kzgl 7’50 + k’s(zz::l 7’50 + kg 7’51}, (40)

and

27 % )

%hzi‘\(['): SuiCvrMin+ 7in M
7’u110}’z'k ayUU 41)
= SuiSorMir+2 Vi )’uu(kl + ket habret k451‘u5ku), (

(u,7=1, .., b, v, k=1, ..., q).
From (39), (40) and (41), the derivatives (30) and (32) become

Qgﬂ:kil{?’ithk‘ff)ks 07 s +(riMud™ + 2k yal T TO™ )

0B af:;
‘ s -1y o ks 2 sy OY iz (42)
JFZkz}‘ik?’zr(Fd) )zs+2k37z;z(r F)rlﬂs +2k4)’ik}’ir¢ )Tﬂ- ,
(i=1,....p; r.s,J=1,....,q¢ ¥+5s),
and
p .
@: y i {yikMikqsks’aZ”'+(7’z‘r[1/fik¢)ks+2/€1 Tik([‘]ra)ﬂl)rs
0¢er SliTh 0Per
+2k27’ihyir(1—1@_l)is+2k371'k(F’F)rk¢ks+2k47’12'k}’1'r(]5k8)ﬂ5 (43)

Oper
- Yx'rYikMz'k¢kr(3re¢fs + 8rf¢’gs)},
(i=1,....p; r,s,e, f=1,...,q r¥s; e>f),

respectively (see also Jennrich, 1973). Replacing dg(@)/0€ in (12) by (42) and (43)
and taking the inverse of the augmented information matrix, we have the
asymptotic covariance matrix of the estimators of the obliquely rotated parameters
with Kaiser’s normalization.

5. Numerical Examples

Numerical examples are based on two real correlation matrices and an
artificial data set. In each example, an exploratory factor analysis model for
standardized observed variables is assumed (see (2) and (21)). One of the real
correlation matrices is that of eight physical variables (Harman, 1976, p. 22, N=
305), where a two-factor model is assumed. The other is the correlation matrix of
twelve psychological tests (Harman, 1976, p. 401, N =355), where a three-factor
model js assumed. The artificial data (Ogasawara’s 1999 Data B) are based on the
following assumed estimates of loadings of orthogonal factors with the assumption
of N=2300,

T 881 4.3.01
Tl 4301881
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The oblique varimax method was emploved for each example. Tables 1-3 show
the estimates of rotated loadings and factor correlations with their estimated
asymptotic standard errors. Tables 1 and 2 contain simulated results, which have
been obtained as follows. First, the correlation matrices which had been construct-
ed by estimated parameters were regarded as population covariance matrices.
Under the assumption of multivariate normality, random observations of the sam-
ple size equal to the real ones were generated. Based on these generated data, the
parameters in the models were estimated by the maximum likelihood method
followed by the oblique varimax rotation. There remained indeterminacies of the
signs and permutations in the columns of rotated loading matrices, which were
removed by choosing the loading matrices closest to the corresponding population
ones. This procedure was repeated 1,000 times and we had 1,000 estimates for each
parameter. The S’s in Tables1 and 2 indicate the standard deviations of these
estimates.

The simulated values are close to the theoretical ones, which shows the accu-
racy of the theoretical values. The standard errors of the parameters with Kaiser’s
normalization are not so different from those without Kaiser’s normalization, which
corresponds to the fact that the estimates of the parameters in the two models are
similar. However, we see that some of them are different both in theoretical and
simulated values (e.g., Table 1, Variable 5, Factor [; Table 2, Variables 11 and 12,
Factor I). Table 3 shows the results for the artificial data, where the results by
simulation are not included since the artificial data, in which some of the com-
munalities are very small, gave frequently non-convergent cases in simulation.
From Table 3 we see that by Kaiser’s normalization the standard errors of the
estimates of the loadings for the variables with small communalities become small
while the standard error of the factor correlation becomes extremely large. This

Table 1
Oblique varimax solution for eight physical variables (N =305)
oo Raw oblique-varimax Normal oblique-varimax
Variable Commu-
I II 1 II ..
No. . Lo o . - nalities
Esti. (N S) Esti. (N S) Esti. (N S) Esti. (N §)
1 84 (018 .019) .16 (025 .026) .85 (.018 .018) .14 (.025 .026) .83
2 93 (012 .013) .04 (021 .022) 94 (012 .013) .02 (.021 .022) .89
3 90 (.015 .016) .04 (.024 .025) 90 (.015 .013) .02 (024 .025) 83
4 84 (019 .019) .12 (027 .027) .85 (.018 .019) .11 (.026 .026) .80
5 04 (023 .024) 94 (020 021) 06 (027 .028) .93 €022 .023) 91
6 . 03 (.033 .034) V8 (028 .029) 05 (.034 .034) 78 (.028 .029) .64
7 —.02 (.035 .035) .77 (.030 .030) —.01 (034 .034) .77 (030 .030) .58
8 15 (044 .043) .61 (039 .039) 17 (042 .042) .60 (039 .039) A6
@21 .35 (.039 .039) .36 (.034 .039)

Note. Esti.=Estimates of parameters; N=Normal theory estimates of standard errors;
S=Simulated standard errors.
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Table 3
Oblique varimax solution for artificial data
. Raw oblique-varimax Normal oblique-varimax .
Variable Commu-
No ! i : i nalities
’ Esti. (N) Esti. (N} Esti. (N) Esti. (N)

1 .80 (.24) 4(.19) 76 (.22) 25 (.26) 80

2 84 (,19) 02 01D 79 (.21) 15 (.26) 73

3 12 .09 —.03 (.09) 10 (07) —.01 (.04) 01

4 14 (19) 80 £.24) 5 (.26) 76 (.22) .80

b} 02 (11 4 (19) 15 (.26) 79 (.21) 73

6 —.03 (.09) 12 (09 — .01 (.04) 10 €.07) 01
b 63 (.05) 39 (.32)

Note. Esti.=Estimates of parameters; N=Normal theory estimates of standard errors.

suggests that when we have large differences in communalities, not only the esti-
mates of factor loadings, but also their standard errors may substantially change by
employing Kaiser’s normalization.

6. Discussion

In the first section, the weights w;=1,0 were mentioned. For this case the
function to be optimized by rotated solutions are constructed from the loadings for
the variables with w;=1. The derivatives of the restrictions with respect to the
loadings for the variables with ;=0 are set equal to zero. (Note that the informa-
tion matrix should be provided for all parameters.) For the variables with w,=1,
Kaiser’s normalization may be imposed if necessary.

In the first section, Cureton and Mulaik's (1979, p.187) weight was also
mentioned. Their weight v, for the ;-ith variable is a function of the loading of the
first principal factor written as

wi=f(An), (i=1...0), (44)

where A;;=(A1),. These weights have a practical advantage in that they give a
simple pattern to the data such as Thurstone’s box problem to which the varimax
method does not. However, presently this method is not used so often and the
usefulness of the standard errors of the rotated results with the weights is unknown.
Nevertheless, from a theoretical point of view, the weights are of interest. In
Kaiser's normalization " was described as a function of B or that of B and @.
With the weights w, in (44), I" is a function of B and A, or a function of B, @(=
T'T)and A. Therefore, the set of parameters for which the information matrix is
to be constructed should contain both unrotated and rotated ones. Ogasawara
(1998a) derived the information matrix by using the reparameterization of covarian-
ce structures, mhich is described in the following way for standardized observed
variables;
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2=D(ATB +Diag{l, -~ ATB))D. (45)

By using the above method, the asymptotic standard errors of the rotated results
with Cureton and Mulaik's (1975) weights may be derived.
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