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abstract

This paper deals with several reductions among knapsack problems.
To devise a reduction from another problem to a given problem is a usual
technique to determine the computational complexity of the given problem
while we discuss reductions which-are employed in order to solve given
problems. Reductions on three types of variants of the 0-1 knapsack prob-

lem are included.
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1 Introduction

A reduction from another problem to a given problem is frequently em-
ployed to describe the computational complexity of the given problem as in
Karp [11]. On knapsack problems, e.g. the maximum clique problem is re-
duced to the set-union knapsack problem in Goldschmidt et al [6], and the
set covering problem is reduced to the max-min 0-1 knapsack problem in
Yu [20]. On the other hand, a reduction is also employed to solve a given
problem in a framework already studied, that is, producing another known
problem by the reduction, and solving it by an algorithm already developed.

This paper gathers such reductions on three types of variants of the 0-1
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knapsack problem.

The 0-1 Knapsack Problem (KP) is a typical combinatorial optimization
problem. In the KP, where items and a knapsack are given, we pack the
items into the knapsack so that the total profit of the packed items is maxi-
mized without exceeding the capacity of the knapsack. The KP is stated as

follows:

n
(KP) maximize 2 p;x;
ji=1

n
subject to D wjz; <c¢
j=1

x €101}, j=1, 2,..,7,

where the profit p; and weight w; for any item j and the capacity ¢ are all
positive integers. We will note that the term “profit-to-weight ratio” fre-
quently used in this paper indicates p;/w;. Without loss of generality we
will assume that w; < ¢ for all j and X7=; w; > ¢ in order to exclude un-
promising items and trivial problems respectively. Throughout this paper,
the set {1,2,...,#n} is denoted by N. In addition we sometimes identify a set
J C N with a solution vector (z);jeny as j € /< x;=1. For details on KP,
see, e.g. Martello and Toth [12], and Chapter 13 in Ibaraki and Fukushima [7]
in Japanese.

The remainder of this paper is organized as follows: Each of Sections
2-4 is a case study. In Section 2, the strongly correlated knapsack problem
is discussed. The subset-sum problem is in Section 3, and the collapsing
knapsack problem is in Section 4. The final section is devoted to conclusion.

2 St_rdngly correlated knapsack problem '

The Strongly Correlated 0-1 Knapsack Problem (SCKP) is a special case of
KP. In the SCKP, the profit p; of each item j is given by w;+ 2 where the
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fixed-charge % is a positive constant. The SCKP is stated as follows:

(SCKP) maximize 2, (wj+k)z; (k> 0)
jEN

subject to D>, wjz; < ¢
jeN

'.Z'j S {0,1}, J €N

147

While an algorithm for KP can be applied to SCKP, the SCKP is hard to

solve due to having a rather narrow span of profit-to-weight ratios as stated

in Balas and Zemel [2].

Example 1. Consider an instance of SCKP with eight items. The weights

are given as follows:

i1 2 3 4 5 6 71 8
wi |z 4 8 12 2 28 46 72,

and £=10, ¢ = 100. It should be noted that, under the assumption
- wp < w4, it follows that (w; +k)/w; > (w;+1+ k) w;41. -

We will here attempt to fix x;=1. First, as an initial solution
obtained by means of an ordinary greedy heuristic we have {1, 2, 3,
4, 5, 6} of profitsum 134, since Tfojw; =74 < ¢ <120 = T7_ ;.
Next, by the linear programming relaxation problem of the given
instance of SCKP with z; = 0- we obtain the Dantzig upper bound
- (Dantzig [4])

| L14+18+22+30+38+ (100-72) x%J}: 156>134.

Consequently we cannot fix z; despite a maximum profit-to-weight

ratio.

Recently, a specialized algorithm incorporating a reduction of SCKP was
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proposed by Pandit and Ravi Kumar [14]. The point of the reduction is that
the objective function of (1) can be viewed as

S wz; + Bk,

jeN
where the f indicates the number of packed items. By this, the problem (1)
is equivalent to the group of subset-sum problems each of which is of an
additional constraint on the cardinality of an optimal solution. As will be
discussed in the next section, the subset-sum problem is a special case of KP,
where p;=wj for all jEN. The problem equivalent to .(l) is stated as follows:

maximize », w;x; + pk
jen

subjectto >, wjz; < ¢
jeN

> 2= B<UB
jeN

z; €1{0,1}, j €N,

where UB:=max{7|27~,_;+; w; < ¢| under the assumption that w; > ws
> - > w, The UB indicates an upper bound of the number of packed
items, that is, if we pack more than UB items into the knapsack then it
always turns out an.infeasible solution. The point of SCKP is that the
larger the number of packed items, the larger the number of the fixed-
charge % also contained in the knapsack. Therefore, the process to find an
optimal solution of (2) should be in descending order of the cardinality of a
solution, e.g. in the Pascal programming language: for 8:=UB downto 1.

The above equivalency is also used.in succeeding studies on SCKP:
Pisinger [17] and Iida [9]. On the other hand, Martello and Toth [13] prop-
osed an algorithm for KP but also applicable to SCKP. The algorithm prop-
osed in [17] named SCKNAP solves equivalent subset-sum problems by dyna-

mic programming while the one in [9] named XSC employs branch-and-bound
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approach. Also, the SCKNAP involves a promising heuristic which attempts
to find an optimal solution under the condition 8= UB. A comparison of
SCKNAP and the algorithm in [13] is presented in [17], and the two algorithms
SCKNAP and XSC were compared in [9]. Summarizing in a word, the SCKNAP

shows the best performance among the three.

3 Subset-sum problem

In this section we discuss a reduction of the Subset-Sum Problem (SSP),
focusing on an approach by ITida and Vlach [8]. To begin with we should
like to state that, as we have seen in the previous section, the SSP is used to
solve SCKP. In addition, the SSP is also used in Pisinger [18] to solve the
multiple knapsack problem. The necessity to solve the SSP thus arises in
several situations. Hence, not only in a theoretical but also a practical point
of view, it is never meaningless to study an algorithm for SSP. Here we
will formally state the SSP. '

(SSP)  maximize 3} az;

JEN

subject to > @z < ¢

jEN

z €10,1}, jEN

Since the SSP is a special case of KP as mentioned in the previous sec-
tion, an algorithm for KP can be applied to SSP. The branch-and-bound
algorithm for KP however shows catastrophic behavior when applied to SSP,
so it is similar to complete enumeration. This fact was reported by Ahrens
and Finke [1]. On the SSP, the point is that the Dantzig upper bound is
always equal to the capacity ¢ due to the constant profit-to-weight ratio
equal to one. For further details on SSP, see, e.g. Chapter 4 in [12], and
Chapter 10 in Pisinger [16]: A tailored algorithm is also proposed in each.
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In [8], a given instance of SSP is reduced to the Partition Problem (PP).
The PP is stated as follows: Given # positive integers cy,..., ¢,; find J a subset
of N so that it minimizes | je; ¢;— Zjen\s ¢ |. By the definition, it is
clear that if J is optimal then N \ J is also optimal.

The reduction from SSP with # items @, ..., @, and capacity ¢ to PP with

n+2 items cy,..., Cy+2 is defined by

¢ = a, forallj €N
Cut1 = 2¢ (&)
Cp+2 = Z]'ENCZJ‘.

Note that, for an optimal solution of the PP (3), it contains either item .z +1
or » +2: Among all solutions containing both items » + 1 and » + 2, a mini-
mized objective value is obviously 2¢ achieved by {#+1, #+2}. Also, the
objective value of the set {1, n+2} is 2(c—a), since ¢ > a;. Then, the
positiveness of @; completes the argument, that is, we have 2 (¢ —a7) < 2c.
The reduction (3) suggests that, for some J C N, if the set J U {n+2] is
optimal to the PP (3) then the set J will solve the original SSP. Indeed, if
the sum of ¢; corresponding to the set J U {n+2}is exactly the half of the

overall sum of ¢;'s in (3), ie. ¢+ Xjen @, then X;e; a;=c follows.

Example 2. Consider an instance of SSP given by =3, 21 =3, a,=4,a3=8
and ¢=9. Using the reduction (3) we obtain the following instance
of PP: ¢1=3, c2=4, ¢3=8, c4=18, ¢c5=15. The optimal solution con-
taining item #+2is {3, 51, and a3=8 < 9=¢. Then, |3}is feasible

for the original instance of SSP, and indeed optimal.

Example 3. Consider an instance of SSP given by =3, a1 =3, a2=4, a3=8
and ¢=10. Similarly we obtain PP: ¢; =3, c5=4, c3=8, ¢4=20, ¢c5=
15.- The optimal solution containing item #+2 is {1, 3, 5}, however,
a1 +a3=11>10=c¢. Therefore, {1, 3}is infeasible for the original in-

stance of SSP, and it cannot be optiinal.
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As implied by Example 3, the optimal solution of the PP (3) does not always
deliver an optimal solution of the original SSP. The failure arises in the

case where

Cj>

¢, ]CN
jeJUin+2}| je\J)Uln+1}

In light of this, the reduction (3) is not completed. As a result, an algorithm
employed in [8] in order to solve the PP (3) was slightly modified to ensure
the optimality of a finally yielded solution.

A comparison of the algorithms proposed in [12], [16], and [8] respective-
ly is presented in [8]. In conclusion, the algorithm in [8] has outperformed
the others only for a few hard instances: prdblems Todd and Avis, the
definitions of which are in Chvétal [3].

4 Collapsing knapsack problem

Posner and Guignard [19] introduced a more complicated problem than KP
named Collapsing 0-1 Knapsack Problem (CKP) with a nonconstant capacity.
In the CKP, the knapsack will collapse according to the number of packed
items. For instance, each item is an antique, and should be covered with
something strong respectively when packed. Then the larger the number
of packed items, the smaller the capacity of the knapsack, due to the strong
covering each item. The CKP is stated as follows:

(CKP) maximize ; p;z;
jEN

subject to D wjz; < b( > xj) (4
JjEN N

je

where the b() is a given monotone nonincreasing function on the discrete
domain IV as b(1) > b(2) = - > b(n).
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In the literature several algorithms for CKP have been proposed, e.g.
Fayard and Plateau [5], and Pferschy et al [15]. In particular, Pferschy et
al [15] proposed two simple but efficient algorithms, in which we discuss the
first one in this section. »

The first algorithm incorporates a reduction which pyroduces an instance
of KP equivalent to a given CKP, and solves the resulting instance by means
of an algorithm for KP. Based on the CKP (4), the reduction constructs KP
with 2z items of weights ay,..., a2, and profits 7%,...,%,. The coefficients

are defined as follows:

w, + A for j=1,..,n
2 {(4n—j)A ~ b(-n), forj=n+1l,..2n
©)
p+C for j=1,...n
yj:[(3n+1—j)C, for j = n+1,..,2n,

where A= X;eyw; and C=Zjenyp;. Then the resulting KP, which we will
call SKP, is stated as follows:
2n
(SKP) maximize ] %z;
i=1
2n
subject to >, eyx; <B (6)
j=1

z €10,1}, j=1,...2n

- where the capacity B is defined as 3#A. Following the terminology in [15]
we will hereafter call an item with index in N small item and an item with
index in {#+1,...2n} large item. The following validates the equivalency
of a given CKP and the SKP (6).

Theorem (Pferschy et al, 1997). The instance of CKP has a feasible solution

with objective value V if and only if the inétance of SKP has a feasi-
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ble solution with objective value V+(2x +1)C.
Proof. see [15]

It should be noted that on a feasible solution of SKP the contents of the
knapsack comprise one large item j and j —» small items. In another view,
the choice of a large item determines the number of small items packed.

On the other hand, the second algorithm in [15] is tailored for CKP. In
fact, the first algorithm incorporating the above reduction is outperformed
by the second, one reason for which is due to the huge coefficients appeared.
Further, the coefficients of small items are highly correlated. More precise-
ly, the profit-to-weight ratio of any small item is almost equal to C/A, which
also makes the resulting instance hard to solve.

At the end of this section we would like to add that the coefficients de-
fined by (5) can be replaced with the following, provided all items in CKP

cannot be packed, viz. b(n) < X;c N w;.

wp + A forj=1,..n
T\ Bru-HA - b(j—n), forj=n+1,.,2n-1

1,..,n

y.
J n+l,..2n—1,

p+C for j
T |l@r+1-5)C, forj

where the capacity B is 2nA. Moreover, the V+ 2z + 1)C in the statement
of Theorem is replaced with V'+(z + 1)C. The contents of the knapsack on
a feasible solution of SKP however remain unchanged regardless of the re-
placement as one large item j and j —» small items.

It will seem preferable that the replacement contributes to the decrease
of the magnitude of the coefficients. In a practical point of view however
the revised one will not improve the performance of the algorithm employed
for SKP, since there exists no change to the remaining weight for j —» small

items after the choice of a large item j. For further details, see Iida [10].
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5 Conclusion

In this paper we have discussed three reductions each of which is employed
to solve a variant of the 0-1 knapsack problem. In summary: First, as im-
plied by the case that the SCKP is reduced to the group of SSP’s, a hard
problem could be solved by being reduced to another problem. This
approach, which could generally be‘called a reduction approach, has still
been involved in the state-of-the-art algorithm for SCKP. Second, although
the reduction approach for SSP merely resulted in showing a rather limited
efficiency, a few hard instances of SSP were solved more efficiently than the
other algorithms due to the reduction from SSP to PP. Third, a problem
could be reduced to a more simple one than the original as the CKP, which
is an extension of KP, is indeed reduced to the KP, thus a reduction itself is
fairly interesting to study. Furthermore, a reduction approach mostly im-
plies that it is not necessary to develop an algorithm tailored, which also
makes it attractive. Finally, we hope that this paper will drop a hint to

solve another variant of the 0-1 knapsack problem in quite a novel way.
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