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COVARIANCE STRUCTURE ANALYSIS OF
CONTINUOUSLY CHANGING POPULATIONS

Haruhiko Ogasawara*®

A model, in which the means and the variance-covariance matrix of observed variables
change with an external variable, is proposed. This is an extension of the analysis of covarian-
ce structures in several populations. Assuming that the observed variables, given the value of
an external variable, have a multivariate normal distribution, the maximum likelihood estimates
of the parameters in the model can be obtained by the Fisher’s scoring method. The model with
a constant variance-covariance matrix, the model with constant correlations, the model of a
single common factor and the model of oblique multiple factors with constant factor loadings
are disucussed for the model of the variance-covariance matrix. Finally, examples of intelli-
gence test scores are provided, where the external variable is age.

1. Introduction

The analysis of covarince structures with several common parameters over different
populations has been developed by Joreskog (1971) and Sdrbom (1974). This method is
based on the assumption that the sample covariance matrix of each population has the
independent Wishart distribution. McGaw & Joreskog (1971) applied the method to a
situation where the covariance structures were supposed to vary in several populations
having different socio-economic statuses.

In Joreskog’s (1971) original literature, the mean structure was not paid attention, but,
Sorbom (1974) treated the expected values of factor scores in each population as the
parameters to be estimated by the maximum likelihood method. This model is called
structured means model and the estimation procedure of the model is covered by the
program LISREL (Joreskog & Strbom, 1981 : Sorbom, 1981). A similar model in item
response theory is found in Mislevy (1987), in which the mean of the examinee parameters,
which represent a latent factor, is determined by auxiliary examinee variables.

In the possible applications of the models of several populations in social sciences,
external variables which define subpopulations are socio-economic status, vears of educa-
tion, age and the like.

In this case, our interest is in the situation in which the parameters change continuous-
ly with the external variables. The problem of development and decay of intelligence is
an example of this case , where the population changes with age. In this paper, we develop
a model in which the variance-covariance matrix changes continuously as a function of an
external variable. The model is a natural extension of the analysis of covariance struc-
tures in several populations.

2. (General model specification and estimation

The models which will be proposed by this paper may be taken as the multivariate
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versions of Ogasawara’s (1986) model. He developed a model in which s, a score, was
normally distributed according to N (u(y), 6%(y)), conditional on an external variable y.
And ¢(y) and ¢*(y) indicate some specific functions of y. He applied the model to the
situation in which the conditional distribution of adult intelligence scores depends on
subjects’ ages. Further, Ogasawara (1988) proposed a model in which the logarithm of a
test score, given an external variable y, was distributed according to N{z(y), o%(y)).

Before specifying our models we explain the notation used here. Let the number of
dependent variables be p and s, be the column vector of these variables for the j-th
individual, (/ =1, ---, N), that is,

Sz:(Slz. S2i, *°7, sz),,

where s, denotes the value of £-th variable for the ;-th individual.

Suppose the distribution of s, depends on the observed value of y;, and hence s,
~N(p;, X;), where p; and X, denote the values of u and £ when y=vy;,, which are the
functions of y. These functions, g and ¥, are specified by the vectors of parameters, 8,
and @, respectively. Further, we assume that s,(; =1, ---, N ) are mutually independent,
that is, we consider only the cross-sectional data instead of the longitudinal one for the
study of change.

In the case of the analysis of covariance structures in several populations, y,(; =1, -,
N ) are grouped and we can use tha likelihood of several independent Wishart distributions.
However, in our case we cannot use this likelihood, since y changes continuously and the
minimum size of the sample in which y takes the same value, v, is generally one. Thus,
we have to consider the likelihood of the multivariate normal distribution.

The likelihood of @, and @, given s,, sz, *--, sy and yi, y,, -+, vy, is

L(Bu, 0o‘| S1, 82, **°, Sw~, Vi, Yo, ", yN)

il _pi _ 1 _
=0 Q) "2 2 exp (=58 — Y I (80— p20)). 1)

Actual forms of g, and X, should be specified according to each application. Hence,
in this section we deal only with our model in a general form.

The negative of the logarithm of (1) is

Np

N
f=—log L= 1o (27r)+% > log) 5| +

2 '21(3{*”4)’2;"1(8{—}1,-)4 (2)

co|—

We minimize (2) with respect to 8, and 8, which is equivalent to maximizing (1), using
the Fisher’s scoring method (the Gauss-Newton method ; Lee & Jennrich, 1979).

Next, we consider the method of testing the goodness-of-fit of the model. In the case
of grouped data, we can use the likelihood ratio test of the model against the unconstrained
model. This follows from the fact that

F=30 " 0g] £:571 ] +er (.57 -4 3)

has the asymptotic x2-distribution with 4. f_:%gp( p+1)—t, where g is the number of

groups, N, the sample size, ¢ the total number of independent parameters, %, the fitted
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covariance matrix and S, the sample covariance matrix in the 7-th group.

In the case of non-grouped data, where populations are changing continuously, there
is no appropriate statistic for assessing the goodness-of-fit of the model. But, the
asymptotic standard errors and the AIC (Akaike, 1976, 1987) may be used for assessing and
comparing models.

3. Various models

3.1 Constant variance-covariance matrix model (multivariate regression model)

In this section we deal with a model in which the expected values of observed variables
vary with an external variable, but the variance-covariance matrix is constant. Here, we
do not consider the structure of the matrix. Therefore,

2i=%(i=1, -, N). 4)

Equation (4) is often assumed in the case of multivariate regression analysis.
Now, we consider the following model.

si:Byi+€i, (5)

where g, ~"**N(0, ) and y.,'=(1, vi:, =, Vai). Y11, -+, Va: are the values of g external
variables for the j-th individual. The matrix B is the px(g+1) matrix of regression
coefficients. In this case g, = Bvy; and, . and @, consist of B and the unique elements of
Y. The number of independent parameters is p(g+1)+p{p+1)/2. When a polynomial
of degree g is chosen, we simply replace y,” by (1, v., ¥, -+, ¥{), others unchanged.

Let B4, be the (£, /)-th element of B. Then the partial derivative of f is

of __ & . e — By
aﬁkl g]yz Illzz (81 By;)

- ~tr{lzk2"§}1(si*Byi)y/}
:_{Zilél(si-Byi)yi,}kt, (6)

E)

where /.. denotes a matrix of an appropriate size, only the (/, £)-th element of which is
one, others zerao.
The estimate of X follows from

= L2 8.0)No* = (57 B (0= )= ) 57, (7)

where ¢*' denotes the (£, /)-th element of ¥-' and &, is the Kronecker delta.

Except for the case, 4, = By., #,. cannot, in general, be obtained algebraically. For
these cases we use an iterative method in the following way. Starting with an initial value
of §,, we replace 8, by an updated value. For X, we use

=L S asa, (&)

which is obtained from (7).
We repeat the cycle until convergence is attained. The estimates of the variance-
covariance matrix of parameters are obtained by
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E( ?*f ):é 5!1’12—1%,

30;.30,/ =1 83# 80#”
E(a—zf):ﬂ(?—@ )2 Suo) X tr{ ™ (Lur+ L) E Lo+ T}
00 1100wy g kL uy Rl Lk uy i
:%(2—61@1)(2*5uu)((iku6w+dkvd”£). (9)

The multivariate regression model represented by (5) is the model in which each
dependent variable is predicted by the same set of independent variables. But, when the
sets of independent variables are different from dependent variable to variable, the result
of the univariate regression analysis is not in general equivalent to that of the multivariate
one. The elements of B, corresponding to the independent variables which are not used
for the prediction of each dependent variable, are zero (i.e. u,; (the £-th element of u,)=
Ber+Besyii+ o+ Be, qrr1Vqe, i, When using the first g. y,'s). But, (6) holds for non-zero
Bx.. Thus, when X is given, B can be obtained algebraically. Conversely, when B is
given, ¥ is obtained by (8). We update B and X alternately until none of the absolute
value of the elements of 3//6fc is greater than some small value. In this case the number
of independent parameters in B is 3}, -{g.+ p, where g, is the order of the polynomial for
the %-th variable.

3.2 Constant correlation matrix model
Let D. be the diagonal matrix consisting of the standard deriations of observed
variables for its diagonal elements when y; is given. Then

O O

D;= Ozi . ) (10)
0 " G
2:=D.R.D., (11)

where R; is the correlation matrix of p variables given y;, Now we consider the model,
R:=R (i=1, -, N). This is the model in which the scales of the variables vary with y,
but the correlations are constant.

The model is

2:=D.RD., (12)
and
af __ Lo R i T PO
aaﬂ - zgl 80# Dz R Dx (sl ﬂz) (].3)

Let 8s'=(80)', -+, 80y, -+, 80,") and B0’ = (O0x1, -+, B0us, **, B0k, sx), Where s, is the
number of the independent parameters in g,;. Assume that fg, is related only to the %-th
variable. Then the partial derivatives with respect to 8o, and #,,, the (%, /)-th element
of R, (k=1), are

i _ O Y N R 00
or Ao g R D (s i) (s ﬂz)}kkeak[, (14a)

N
P / %E(Sifﬂi),D;lRil([kj+Ijk)R71Di~1(si_#1')
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=N7’kj_{RJ-ZZ},Dfl(Sz“ﬂi)(Sz‘—ﬂ-i)’DFlRfl}kj. (1456)
Setting (14p) equal to zero,
JVED Hsi— ﬂi)(Si_ﬂi)’DAfl. (15)

Thus, given D, and g, (i =1, ---, N), we obtain R algebraically. Next we have the

information matrix as follows.

2f il aﬂz 1 1 1 aﬂz
E( spag7)= 2 %. D'k D3 36, (162)
Zf i >, -1 p~t -1 . ) S1p-l -1
(et )= & t(D7 R D7 Lk D+ D.RLD R D
aou Gom-
(quRDi+DiR[uu)} 80 aeo,uv
_ N 1 1 -1 1 1 (?Gm aduz
*g}l tr( D7 ea D7 ou+ RE DR D7 qu)m 306.0n
& Srut 7™ Vi 00a: 00 ui
_igl OniOus a@akl aguv. (16b)
E( 0 Y=L S DR D (TwkD 4 DRIWDT R DT
a@okl(?rm" 2 = 7 i kR i i kR i i
0C 5
(Di[mnDz'+Di]ani)} ago,kl
_1 & 1 1 1 aO‘m
=g DR DI it Lea DT R™ NI+ fum )55 2
— il 1 1 aak!
_Z: {(Imn+[nm)(R D [kk)}aeo_l
BE
(ks m, k) E( g0 ] )=0.
_ p R agrL
(k m) E( aHO'mlarmn)_lZ:l Omi % ofom:’
N m
(k:n) E(a nlar 71) zgl (771 aégf;:[ (166)

(arkcay ) —2 tr{D 'R” ID 1D ([kl+ILk)DD 'R 1D 1D (1uv+lvu)D}

7tr{R et )R (1uv+[vu)}

:Ntr{R71(1k1+[1k)R_l[uv}

:N(?,kvrul_‘_rkurlv)_ (lﬁd)

The vector g, is specified by each application independently of D;. When
polynomials are chosen for g, the same discussion in the previous section applies here.
The vector 8, consists of @, and the elements of unique off-diagonal elements of R.
Suppose that g, and g.; are described by polynomials. Let g., and g be the orders of
the polynomials for y,, (the £-th element of u,) and o4, respectively (i.e. gu; = 80a1+ O02ys
+++8s,, qee1 ¥7°). Then the total number of the independent parameters is 3 s—#( s
+ao)+p{p+3)/2.
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3.3 One-factor model

In the following two sections, we deal with factor analysis models. We assume two
types of changes with an external variable in the case of factor analysis. The one is the
change of factor loadings and the other is that of the variance-covariance matrix of factor
scores.

In this section, we deal with the change of factor loadings in a particular case where
the one common-factor structure is assumed. The model is

2i=AA+ T (17)

where A, is the vector of the factor loadings of a single common factor and ¥, is the
diagonal matrix consisting of the factor loadings of unique factors, given y;.

Let Ag: be the k-th element of A, and @,, be the vector of the parameters with respect
to the £-th variable. Let #..: be the /-th element of @,,. Similarly, 8,. and @,., are
defined. Further, we suppose that each parameter in A; and ¥; corresponds to only a
single variable.

The derivatives except those for g, are

Of i s v o
301‘&[ g{(z El (Sz ﬂl)(Sz ﬂt)zz )xz}kfth row 86 ki (lSa)
e LT O P G e N (184)
30%5 =1
azf _L y 1 K o 1 a/lki a/lui
E( S )= B T ek + e S (e + ke ) - e
— X a/{k.l aAu:
*g T(Z ekl E eu)\ +Z: ekll E leu )80 - rz aﬁxuv
N .
= 2 ST e (A S e+ (5T nd 50 Ak S (18¢)
f _ 1 1 Mre  OPus
E( 3610350 ) = BT (57 ek 4 Ao )7 B} 250
_ -17. -1 a/lkz 8¢ui
_2>< 121(21' Al )ZI(ZI )ku ‘r/’ua 30 ko a@"ﬁuv L] (lgd)
T NNV DU VN v
E( agwk[aﬁtﬁuv)iZXigl(Zl )ku ¢kz¢uz aﬁwu aeclzuuy (188)

where e, is the p-dimensional vector, the k-th element of which is one, others zero.

The discussion on g, is the same as the previous section and is omitted here. The
vector #, consists of @i, -+, Oip, By1, **, B¢p. Suppose the polynomials for g., A; and ¥',,
then the total number of the independent parameters for this model sums to 341 (gue + g1s
+gee)+3p, where g, and gy are defined in the similar way to gue (i.6. Axi = Gisr + sz Vi
+o Gk, g 3™, @i = Gonr + Oprayi +-- + Do, w1V IF).

3.4 Oblique multiple-factor model

In this section, we deal with a model in which factor loadings remain unchanged, but
the variance-covariance matrix of oblique factors changes with an external variable.
Factor loadings are the regression coefficients of observed variables onto factors and
represent the properties of the measurement of observed variables. Thus, we can assume
that factor loadings are constant when the measurement properties are the same in spite
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of the change of the external variable. But, still in some situations covariances among
factors change, since they reflect individual values of latent variables, which may be very
likely to change.

The variance-covariance matrix of the observed variables, given vy, is

=024+ ¥, (19)

where A is a p X g (the number of common factors) matrix of factor loadings and @, and
¥, are the variance-covariance matrices of common factors and unique factors given y.,
respectively. This model is an extension of Joreskog’s (1971) model in which @; and ¥,
have different values from group to group.

Now let T be a g xg non-singular matrix. If we replace A4 and @; by AT and
T '@, T, respectively, (19) is unchanged. That is, the model (19) has no identification.
Therefore at least ¢® constraints must be imposed. The situation is the same as in the case
of single population. But in the latter case the variances of common factors are often set
to one and (g*—g) constraints are imposed on / and @. Thus, the off-diagonal elements
of @ are interpreted as correlations. But in the case of (19) we cannot use this method,

N
since @; varies with ;. It may be appropriate to set (1/N )3 Diag(®;)=1 or to impose g*
i=1

constraints on A.

Now we derive the partial derivatives and the information matrix except those for @,.
Let A, be the (%, /)-th element of A and, d¢.; be the /-th element of the vector, 8p,;,
which consists of the parameters with respect to g@.; the (% j)-th element of @,
Similarly, O¢.;, 84 and ¢, are defined. Again we suppose that each parameter in @; and
¥, corresponds to a single variable. The final expressions in the following equations are
set to conform to the results shown by Joreskog (1971) in the case of several populations
as much as possible.

S L Bul(5 (s p s ) TN @A+ A0 )

= S5 - 27 (s~ g — Y 507140 L (20a)
ae‘ifkﬂ:7(2—5kj)l'zj:l[A’{Zrl—2:‘<si—u1~)(si—uf)’2 }A]k, a%, (204)
#{M 2% ;T_ZI{Z?]—ZF‘(si—ui)(s,-—ﬂi)’E:l}u%:l. (20¢)
B gh) =y Bl U@ + AG LI 1A'+ A0}

N

2
Ztr( llkj@i/l’Ei 1A¢g‘[¢s+2;1A¢i1jlz2i_1A®i[ts)

= S @A T A H(TIAG)AETAGI).  (20d)

(2=8e) 2 tr ’:‘(lk_iw.A'+A@iljk)Z:lA(13,+1,s)A'}§;’—S“

(2= sz)Etr(/l EN @A 0 M+ A E 0 G0 Z7 lAlts)gg;“
sl

(2— as[)E{(A'Z:l)fk(cpiA’zrlA)Js+(/1’2;1)sk(m,-A'zzlA)ﬁ}%.

E(W)

N|>—‘ t\:\r—‘ 4=~|>—‘
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(20e)
E(ﬁ,i;{;ﬁ):% ﬁ:tr{zfl(lkjcb,-/l'ww,-l,-k )Z:lluu}%
= B (T AGTI L) S
= 2 (T ACL (S D (207)

N0 AN VD U PO -1 NRYL
E( aemaemm)‘s(z 8)(2 ast)lgtr{z,r AU+ 104

- N_OPrsi _OPsti
S A Fsi + 1) A }ae¢)kﬂ 000 sem

— (2= 82— 85 ) [ (A 5 ALuA 57 ALy

’ -1 A7 -1 3;171:;; a¢sn
+ A2 ATA Y A[ts)—m 300 5em

= (2= )2 80 ) T A BT A A T A e

+(A'z;1/1>s,z(/1’z;1/1m%%. (209)

O f 1o s ad . _ ) fe-1) OPrii OPui
B o i) = T 0= ) el At L) 57 S

—_ 1 O usi Oui
- (2 31:;)2 (A Z )ku(/l 2 )Ju a(9¢kjl aﬁwuv (20h)

2y g N L b 3y

E( aewaem) g AT ALWIT AL 5 =52
L& e e -
=5 2 Vg gp (207)

The discussion on g, is the same as before and is omitted here. We suppose
polynomials for y,;, @sy: and ¢, and that ¢* elements of /| are pre-assigned. Let gos;, and
ge. be the orders of the polynomials for g¢,;; and ¢. (i.e. @ui= Oppsi+ Qorizy:+-
+ Oorsaoni+ V% o =Oprr + Opnoys T+ Bur, genr v?*).  The total number of parameters

P q
is 51(0uh+(]wk)+k£(1wkj+ﬁq_qz/2+2P+q/ 2.

3.5 Description of change

Although in the earlier sections g%, A, and the elements of @ and ¥ were the functions
of y, actual expressions of these functions were not given up to here except for
polynomials. We have to specify appropriate functions carefully considering characteris-
tics of the application situation. However, for descriptive purposes and to confirm roughly
the tendency of change, polynomial functions may be used. In the analysis of covariance
structures in a single population, Ogasawara (1979) and McDonald (1980) used polynomial
functions for expressing the relationships between factor loadings.

4. Examples

4.1 Data
The data which will be analyzed in the following sections, is the same as that of
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Ogasawara (1986). The ability tests A, B and C (tentative names) consist of four, six and
two subtests, respectively, which are administered with time limits. The task, the time
limit and the number of items for each subtest are shown in Table 1. The first halves of
Tests A, B and C are supposed to measure mainly perceptual speed. The second halves
of them measure mainly abilities of reasoning and spatial orientation, and are relatively
difficult compared to the first halves,

Subjects were Japanese railway employees aged 20 to 54. Tests A and C were
administered to the same subject group and Test B to part of this group and another group.
The numbers of subjects of Tests A and C, and Test B were 1495 and 1493, respectively.
These data do not show noticeable group differences except for age.

The scores of the tests are the numbers right, except that the score of Subtest Bl is
the number right minus the number wrong.

4.2 Application to the data of Tests A and C

All the foregoing models were fitted to the data of Tests A and C. The vectors and
matrices g, g, A, @ and ¥ were supposed to be expressed by polynomial functions of age,
y. We used the results of the separate analysis for each variable (Ogasawara, 1986) to
specify the orders of the polynomial functions in g. He showed that the orders of
polynomial functions in the elements of g, which minimized the AIC, were 2, 3, 1, 1, 2, and
2 for Subtests Al, A2, A3, A4, C1 and C2, respectively. (In the original paper, the optimal
order of the polynomial for A4 was 3, but should be corrected to be 1.) These polynomial
functions were used for fitting the foregoing models. As a result, it was shown that none
of the absolute f-value (estimate/estimate of standard error) of the coefficient for the
highest term in the polynomial function in each element of pu was less than 2, indicating
adequacy of the model of g

With respect to ¢ the orders of the polynomials of the minimum AIC in Ogasawara
(1986) were 0, 1, 2, 2, 0 and 1 in the order of the subtests, where “(0”’ meant that the standard

Table 1
Contents of subtests
Time Number
Test Subtest Task (min) of items
Al Letter search 2 45
A A2 Finding figures 2.5 42
A3 Symmetric figure I 3 32
Ad Rearranging figures 35 35
C C1 Digit symbol 15 80
c2 Symmetric figure II 2.5 32
Bl Figure comparison 2 66
B2 Figure matching 2 54
B B3 Figure classification 2 45
B4 Part and whole 2 34
B5 Construction of square 2 30
B6 i Surface development 3 35




24 H. Ogasawara

Table 2
Results of fitting the constant- ¥ model and the constant-R models
to the data of Tests A and C

Model Subtest: Al A2 A3 A4 Cl (2 AlC
No. ")
1 2 o constant 5039L.35
(38)
2 R : constant
Order of pylynomials in o : ] 1 2 2 [0 1 50342.97
FA 57.56 242 —-113 —323 5835 —3.95 (44)
3 R : constant
Order of polynomials in ¢ : 0 1 1 2 0 1 50342.29
it 57.56 241 —530 -—-3.20 5835 —3.98 (43)
R=[ 1.00
0.36 1.00
0.25 0.3 1.00
0.19 0.25 0.34 1.00
0.31 0.30 0.28 0.29 1.00
0.20 .33 0.52 0.42 0.37 1.00
'{-value of the estimated coeflicient for the highest term in each polynomial
'*Values in parentheses under AIC’s indicate the numbers of independent parameters.
Table 3
Results of fitting the one-factor models to the data of Tests A and C
Wodel Subtest: Al A2 A3 A4 Cl 2 ﬁl.c)
4 Order of polynomials in 4" : q 1 2 2 0 1
Lt 1436 —009 —199 —0.25 1877 —3.37 50464.82
Order of polynomials in Diag (¥') : 0 1 2 2 i} 1 (41)
th: 51.25 2.19 011 =327 4326 178
5 Order of polynomials in A" : 0 0 2 1 0 1
th: 14.31 19.15 —2.00 --0.58 1878 —4.64 50460.30
Order of polynomials in Diag (¥') : 0 1 1 2 0 0 (37)
th: 51.28 204 —198 —-350 48.27 36.13
6 Order of polynomials in A" : 0 0 2 0 0 1
th 1431 1914 —-2.04 19.67 18.77 —4.59 5H(458.60
Order of polynomials in Diag (¥) : 0 1 1 2 0 0 (36)
th: 51.30 209 —197 —3.56 48.30 36.12
"' as before

deviation of the subtest score was constant.

We fitted twelve models named Models 1-12, the results of which are shown in Tables
2-6.

Table 2 shows the results of fitting the constant variance-covariance matrix model and
the constant correlation matrix models (hereafter referred to as “constant-¥ model” and
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Table 4
Results of fitting the two-factor models to the data of Tests A and C
Model Subtest: Al A2 A3 A4 Cl c2 B
A= 3 1.34 0t 0.004 2.90 —1.00
(t-value) (4.34) (0.02) (3.96) (—2.32) 50396.46
0t 1.05 3 1.98 4.26 4.14 (34)
. (5.97) (12.48) (8.52) (10.04)
Order of polynomials in : 0 0 0
P11, @21 and @aa, £t 5.51 9.47 11.69
Order of polynomials in : 0 0 0 0 0 0
Diag (¥), ¢t 637 1821 1948  24.00 2330 6.58
A= 37135 0'* 0t 306 —~0.94
(¢-value) (4.70) (431)  (—2.53) 50355.19
0 1.05 3" 2.01 4.22 4,12 (42)
g (6.26) (16.68)  (8.49) {10.85)
Order of polynomials in : 1 1 1
@11, w21 and @, ¢t 072 0.28 —-3.76
Order of polynomials in : 1 1 1 1 1 1
Diag (¥), t': —1.60 2.64 —-3.17 -297 -—114 —0.38
Order of polynomials in : 0 0 2 50347.04
9 ?11, @21 and @gg, t*: 606 1028  —0.52 41)
Order of polynomials in : 0 2 2 2 0 0
Diag (¥), t': 695 —080 —019 —-304 2333 7.92
Order of polynomials in : 0 0 1
10 @11, @21 and g3, ' 61l 1033 442 50343.81
Order of polynomials in : 0 1 1 3 0 (39)
Diag (¥), i 717 2.63 —3.33 0.27 2329 7.76
A= 3 1.33 (1A o' 3.00 —0.97 50341.88
(t-value) (4.84) 4.35) (—2.78) (38)
ot 1.06 KA 2,00 422 414
1 {6.57) (16.72)  (8.69) (11.74)
Order of polynomials in : 0 0 1
eu, @2 and @2, e 6.11 10.33 —4.43
Order of polynomials in : 0 1 1 2 1} 0
Diag (&), tt: 7.6 263 —333 —306 2329 7.78
A= 3" 1.13 0! 0t 2.34 —0.66 50426.61
Grouping (¢-value) (4.25) (3.81) (—2.52) (112)
Method o 1.14 3 1.98 4.53 3.81
(7.20) (17.02) (9.85) {13.30)

1Y ag before
t* pre-assigned values
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Table 5
Estimated values at various ages (Model 11)

¥
Age P P P2z 7!
Al A? A3 Ad C1 C2

22 7.64 5.70 11.77 8.18 78.63 5.30 0.76 0.43 1.03 0.48
27 7.64 6.11 11.03 9.06 78.63 3.30 0.76 0.43 0.95 0.50
32 7.64 6.51 10.30 9.38 78.63 5.30 0.76 0.43 0.86 0.52
37 7.64 6.92 9.56 9.14 7863 5.30 0.76 0.43 0.78 0.55
42 7.64 7.32 8.82 8.34 78.63 5.30 0.76 0.43 0.69 0.59
47 7.64 773 8.09 6.97 78.63 5.30 0.76 0.43 0.61 0.63
52 7.64 8.13 7.35 2.05 78.63 5.30 0.76 0.43 0.52 0.67

1

correlation between two factors

Table 6
Estimated values of the parameters in the grouping method (Model 12)

Age i @11
group | A3 A2 A3 Ad C1 c2

|
2
N
S
~)

-24 5.16 5.22 10.51 861  84.00 7.23 1.06 0.30 0.75 0.33
25-29 | 8.05 6.82 10.59 8.06 7410 6.93 0.75 0.42 118 0.45
30-34 9.28 7.15 10.75 792 94,57 6.25 0.73 0.44 0.98 0.52
35-39 | 5.61 6.42 944 1041 7837 5.30 1.05 0.56 0.77 0.63
40-44 6.98 8.20 9.39 799 8590 454 0.72 0.45 0.83 0.58
45-49 4.77 7.59 6.78 6.50  66.76 5.57 1.06 0.33 (.55 0.44
50- 4.32 7.68 8.17 522 7060 6.29 0.99 0.44 0.58 0.59

Tas before

“constant- # model”). The AIC of the constant-% model is much larger than that of any
constant- £ model, showing inadequacy of the constant-Y model. In Model 2 (the con-
stant-R model), the absolute ¢-value of the coefficient for the highest term in the
polynomial function (hereafter referred to as “¢-value”) for Subtest A3 is small. Hence,
replacing the order by 1, we have Model 3, the AIC of which has decreased slightly from
Model 2. Table 2 shows the estimate of R in Model 3, suggesting the two groups of
Subtests (Al, A2, Cl and A3, A4, C2). We stopped fitting other constant- R models, since
all the ¢-values in Model 3 were large enough.

Table 3 shows the results of fitting the one-factor models. Initially, the orders of
polynomials for 2 and Diag (¥) were set to those for ¢ which had been supposed to be
appropriate by Ogasawara (1986). Reducing the orders of polynomials which have small
absolute ¢-values, we have obtained the minimum AIC model (Model 6) in the one-factor
models. But the AIC was much larger than that of the constant- ¥ model or any constant-
R model.

Table 4 shows the results of fitting the two-factor models. Four elements of A4 were
set to be 3 or 0. That is, the scores of Subtests Al and A3 were made to be the reference
variables representing Factor 1 and Factor 2, respectively.
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In Model 7, all the elements of @ and Diag (¥') were set to be constant. This model
is different from the ordinary factor analysis model in that the means of observed variables
change with an external variable y. All the s-values in A were large except that of
Factor 1 for Subtest A4. In Model 8, the loading in this position was set to be zero. In
addition, in this model, all the orders of polynomials in @ and Diag (¥') were set to be one
in order to check the linear tendency of change.

The AIC of Model 8 decreased considerably from Model 7. But the ¢-values with
respect to g, @2, and the elements of Diag (¥') for Subtests Al, C1 and C2, were still small.
Hence, the next model, Model 9, was fitted to the data setting the orders in these positions
equal to zero and remaining orders to two to investigate appropriate orders. Although the
AIC again decreased, the ¢-values of ¢;, and the elements of Diag (¥') for Subtests A2 and
A3 were small, indicating that only the order of the polynomial of Diag (¥) for Subtest A4
should have been increased. Hence, restoring the orders of the polynomials with small /-
values and increasing the order of Diag (¥') for Subtest A4, Model 10 was fitted to the data.
The result shows that the order of the polynomial which was increased, should have been
as before.

Model 11 was the final model, where all the f-values were large enough to stop fitting
other models. The AIC of this model is the smallest in all the models fitted, but not so
different from that of Model 3(the constant-R model). From the pattern of A in the
results of fitting Model 11{Table 4), we see that the first halves and the second halves of
Tests A and C represent different abilities in spite of the situation where the means and the
variances change with age.

For illustrative purposes we show some of the estimates of the means and the factor
variance-covariance matrices in Model 11 as follows:

1=8.44+0.623y—0.010632,
2= —2.79+1.74y —0.0482y% +0.000388°,

$2:=1.41-0.0170y,

91)1 :7.64,
$.=3.92+0.0810y,

™ Ry

Table 5 shows the estimated values of the variances and the covariances of factors
fitted by Model 11 at several ages. In the elements of &, @,, decreases with age, others
constant. Among the diagonal elements of ¥, the one for Subtest A2 increases, the one
for Subtest A3 decreases and the one for Subtest A4 increases for a while and decreases
with age, respectively. As a whole the variances of both the common and the unique
factors corresponding to the second halves of Tests A and C tend to decrease with age. On
the other hand , those corresponding to the first halves of the tests seem to be relatively
constant.

The correlation between the two common factors calculated from @ is also included
in Table 5, showing the increasing tendency with age reflecting the fact that only the
element, @ain @ decreases with age, others constant.

The results of fitting the model by the grouping method are presented in Table 4. The
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age groups are defined by the equal length of age interval (five years), that is ~24, 25~29,
.-+, 50~. The model is identical with Jéreskog's (1971) one, which consists of a common
A to the age groups, and ., @, and ¥, peculiar to the ;-th group. The pattern of A in
Model 12 is similar to that of Model 11. However, the AIC is much larger than that of
Model 11. Table 6 presents the @," s, #,'s and the correlations between the two common
factors, in which we see the tendencies which vary with age. But, the results also reflect
the sampling variations. Thus, Model 11 has advantage over Model 12 not only in view of
AIC but also taking into account the tendency of development and decay of intelligence
with age.

4.3 Application to the data of Test B

As for the data of Test B, the separate analysis of each observed variable by
Ogasawasa (1986) showed that the appropriate orders of polynomial functions for g were
2,2,3,3,3 and 2 in the order of the subtests. And the appropriate orders for ¢ were 0, 1,
1,1, 0, and 1.

We fitted thirteen models named Models 1-13, the results of which are shown in Tables
7-11.

Table 7 shows the results of fitting the constant- model (Model 1) and the constant-
R models to the data. In view of the AIC, Model 1 obviously lacks the goodness-of-fit to
the data, favoring the constant- R models. But in Model 2 the f-value of g for Subtest B3
is not large enough. Reducing the order of the polynomial in this position leads to Model
3. But the comparison between the two models is difficult, considering both the ¢-values
and the AIC’s.

Table 8 shows the results of fitting the one-factor models to the data. The large AIC’s

Table 7
Results of fitting the constant- ¥ model and the constant- R models
to the data of Test B

Model Subtest: BI B2 B3 B4  B5  B6 o
1 X : constant 51433.51
(42)
2 R : constant
Order of polynomials in ¢ : 4 1 1 1 0 1
A 9843 222 —173 —35H2 6299 —542
R=[ 100 51397.64
0.43 1.00 (46)
0.38 0.47 1.00
0.29 0.49 0.38 1.00
0.29 0.47 0.37 0.57 1.00
0.20 0.30 0.28 041 0.45 1.00
3 R : constant
Order of polynomials in g: 0 1 0 1 0 1 51398.45
AR 0842 —210 5985 —347 6299 —540 (45)

Tt* as before
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Table 8
Results of fitting the one-factor models to the data of Test B
Model Subtest: BI B2 B3 B4 Bs Bs 4K
No. "
4 Order of polynomials in 4": 0 1 1 1 0 1
¢t 1794 —244 -322 -13b 29.09 —2.51 51555.77
Order of polynomials in Diag (¥) : 0 1 1 1 0 1 (41)
t': 50,77 —0.48 049 -—3.11 4043 —4.20
5 Order of polynomials in 4" : 0 1 1 0 0 1
e 1795 —250 —3.08 29.00 29.03 —2.33 51552.11
Order of polynomials in Diag (¥) : 0 0 0 1 0 1 (38)
(o 5077 4219 48.05 —3.71 4055 —4.21
"'t as before

indicate that an additional factor is needed.

Table 9 shows the results of fitting the two-factor models. For identification of
model, the scores of Subtests Bl and B4 were set to be the reference variables, representing
Factor 1 and Factor 2, respectively.

In the results of fitting Model 6, the ¢-value of the loading of Factor 1 for Subtest B5
is small. Thus, the next model, where the order of the polynomial was replaced by zero
(constant), was fitted. Since the revised model, Model 7, did not show the improvement of
the AIC and the just identified model would be useful to grasp the tendency of @ and &
independently of additional restrictions on A, only the four elements of /1 were set to be
fixed. The models, where the orders of polynomials for @ and Diag (¥) were one (Model
8), two (Model 9) and again one (Model 10, 11, 12), were fitted successively.

Models 10, 11 and 12 show the similar values of AIC less than those of other two-factor
models, Among the elements of @ in Models 10 and 11, &, and &, decrease with age.
Although the ¢-values of ¢,; and ¢, in Models 10 and 11 are not large enough to conclude
the change occurred with age, the two of the subtests in the second half of Test B show the
significant decrease of Diag (¥') with age, which is the similar tendency in the case of Tests
A and C.

In contrast to the case of Tests A and C the correlation between the two common
factors decreases with age in Model 11 {(shown in Table 10) or is constant in Model 12.

We present some of the estimates of the means and the factor variance-covariance
matrices in Model 11 as follows :

H2=27.2+0.192y —0.00566°,

3= —1.64+2.45y —0.0702%* +0.000579y°,

P21 =0.997—0.00452y,

@22:0.993,

@5:6.02,

$6=32.0—0.386y.
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Table9
Results of fitting the two-factor models to the data of Test B
Model Subtest: Bl B2 B3 B4  BS B6 &0
A= 3207 210 0'* —035  —0.60
(¢-value) (6.64) {6.36) (—1.49) (—2.26) 51433.55
0t 139 1.01 3t 3.42 351 (38)
6 (4.36)  (3.04) (10.70)  (10.68)
Order of polynomials in : 0 0 0
@11, @2 and @, th: 889 1199  14.03
Order of polynomials in : 0 0 0 0 0 0
Diag (¥). ¢ 1718 1435 1985 17.27  12.19 21.57
A= 3 208 213 0" 017 040
(¢t-value) (7.07) (7.23) (—1.79) 51434.12
0** 135 0.97 3t 3.00 3.27 37)
; (4.54)  (3.09) (23.88)  (11.53)
Order of polynomials in : 0 0 0
P11, @21 and @, th: 881 11.88 1484
Order of polynomials in : 0 0 0 0 0 0
Diag (¥), ¢ 1668 1463 19.78 17.76  17.26 21.65
Order of polynomials in ; 1 1 1
8 @11, @21 and @aa, ' —108 —222 -1.75 51407.04
Order of polynomials in : 1 1 1 1 1 1 (47)
Diag (¥), $0 =138 —111 -073 —3.34 154  —4.87
Order of polynomials in : 0 2 2 51412.60
9 P11, @21 and @, IANR 894 -—0.18 0.42 (46)
Order of polynomials in : ] 0 0 2 0 2
Diag (¥), o 1733 1472 1993 —095 1221 —0.07
Order of polynomials in : 0 1 1 51405.99
10 @11, @21 and @za, e 894 —180 —1.24 (42)
Order of polynomials in : 0 0 0 1 0 1
Diag (¥), 1734 1471 1972 —324 1236 —4.84
A= 3207 215 0"t 040 —062 51405.48
(¢#-value) (6.75)  (6.94) (—1.71) (—242) (41)
o' 139 0.97 3 3.51 3.49
1 (4.40)  (2.87) (10.92)  (10.90)
Order of polynomials in : 0 1 0
@11, 921 and @y, PN 896 —1.33 1414
Order of polynomials in : 0 0 0 1 0 1
Diag (¥), ¢t 17.67 14.53 19.56 —3.34 11.98 —4.88




COVARIANCE STRUCTURE ANALYSIS OF CHANGING POPULATIONS 31

Table 9 (continued)

Model Subtest: Bl B2 B3 B4 B5 B6 AIC
No. ")
A= 3t 208 2.09 o't —0.38 —0.64 51405.30
(t-value) 6.64) (6.89) (—161) (—2.45) (40)
0t 139 1.03 3t 3.48 3.52
19 (4.32)y  (3.08) (10.82)  (10.75)
Order of polynomials in : 0 0 1}
P11, o and @o, ¢ 891 1205 1413
Order of polynomials in : 0 0 0 1 0 1
Diag (¥), ¢t 1729 1425 1992 —-325 1210 —4.79
A= 3t 212 2.05 o't —0.39  —0.76 51397.15
13 Grouping (t-value) (6.99) (7.12) (=1.71) (-2.87) (113}
method 0 1.33 1.04 3t 347 3.67
(419)  (3.21) (11.26)  (10.93)
11T ag before
Table 10
Estimated values at various ages (Model 11)
7
Age @11 521 9522 7!

Bl B2 B3 B4 B5 B6

22 25.32 9.98 16.87 8.96 6.02 23.54 1.54 0.90 0.93 0.5
27 25.32 9.98 16.87 8.35 6.02 21.61 1.54 0.87 0.93 0.73
32 25632 9.98 16.87 7.74 6.02 19.68 1.54 0.85 0.93 0.71
37 25.32 9.98 16.87 7.14 6.02 17.75 1.54 0.83 0.93 0.69
42 25.32 9.98 16.87 6.53 6.02 15.82 1.54 0.81 0.93 0.67
47 25.32 9.98 16.87 5.92 6.02 13.89 1.54 0.78 0.93 0.65
22 25.32 9.98 16,87 5.31 6.02 11.96 1.54 0.76 0.93 0.64

+

as before

Table 11
Estimated values of the parameters in the grouping method (Model 13)

Age v A . .

P11 P21 P22
group | g B2 B3 B4 B5 B6

=)

-24 | 2783 1060 16l 8.72 5.90 23.38 1.37 0.89 0.96 0.78
25-29 | 27.00 1021  18.26 7.91 5.49 20.93 1.90 0.96 1.04 0.69
30-34 | 29.00 1155  17.02 7.23 5.02 20.79 1.55 1.07 1.09 0.82
35-39 | 20.58 771 17.65 8.29 6.26 15.95 1.63 0.90 0.97 0.71
40-44 |+ 2199 1051  17.08 7.14 6.31 16.36 1.45 0.69 0.75 0.67
45-49 | 26.22 934  19.59 5.43 6.45 13.61 1.03 0.63 0.88 0.65
50- 24.24 709 10.60 4.45 8.47 11.561 2.11 0.88 0.80 .68

*as before
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The results of Model 13 (the grouping method) show that A is similar to those of the
previous models. In view of the AIC, Medel 13 seems to have advantage. However, the
grouping method does not consider the tendencies of the changes of the subtest scores with
age. Further, since the original data is not grouped and the grouping method depends on
how to group the non-grouped data, we do not accept Model 13.

In the data of Tests A and C, the optimal model was the oblique two-factor model
(Model 11}, but the AIC of which was not so different from that of the constant- R model.
In the case of Test B the optimal model was the constant- R model. Thus, we conclude
that the correlations between the subtests are relatively constant in spite of the change of
@ and ¥. In addition, we obtained the tendency of continuous changes of the variances
and the covariances of the factors, which had not been possible until our model was applied.

5. Some concluding remarks

The models we have proposed in this paper deal with the moments which change
continuously with an external variable. These models are not covered by present com-
puter programs such as LISREL and COSAN. Up to now, these problems have been dealt
with by grouping data accordng to some criteria. However, considering the loss of
information by grouping and the difference of results made by the difference of grouping
methods, we feel that the proposed model should have some advantages over the grouping
methods.

But, the proposed model requires much CPU time, because the calculation of the
gradient vector, the expected value of the Hessian matrix and the inverse of X, is very
time-consuming. One of the reasons for this is that X7 must be computed for each 7, ({
=1, --, N )} at each iteration. The CPU time can be reduced considerably by computing
only the several £;'"s corresponding to typical 7’s at each stage of iteration. After the
iteration converges, we can obtain the exact value of the information matrix.

In the previous examples, age was the only external variable. But, in general,
multiple external variables may be considered such as age, years of education and income.
But, this extension should not be very difficult, and, in fact, the algorithm necessary for the
calculation of polynomials can be used for the multiple external variables, as was described
in 3.1. In addition, the combination of discreate external variables, e.g. sex, and continu-
ous variables may be possible.
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