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   A model, in which the means and the variance-covariance matrix of observed variables 

change with an external variable, is proposed. This is an extension of the analysis of covarian

ce structures in several populations. Assuming that the observed variables, given the value of 

an external variable, have a multivariate normal distribution, the maximum likelihood estimates 
of the parameters in the model can be obtained by the Fisher's scoring method. The model with 

a constant variance-covariance matrix, the model with constant correlations, the model of a 

single common factor and the model of oblique multiple factors with constant factor loadings 

are disucussed for the model of the variance-covariance matrix. Finally, examples of intelli

gence test scores are provided, where the external variable is age.

2. General model specification and estimation 

   The models which will be proposed by this paper may be taken as the multivariate
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1. Introduction 

   The analysis of covarince structures with several common parameters over different 

populations has been developed by Joreskog (1971) and Sorbom (1974). This method is 
based on the assumption that the sample covariance matrix of each population has the 

independent Wishart distribution. McGaw & Joreskog (1971) applied the method to a 

situation where the covariance structures were supposed to vary in several populations 

having different socio-economic statuses. 

   In Joreskog's (1971) original literature, the mean structure was not paid attention, but, 

Sorbom (1974) treated the expected values of factor scores in each population as the 

parameters to be estimated by the maximum likelihood method. This model is called 
structured means model and the estimation procedure of the model is covered by the 

program LISREL (Joreskog & Sorbom, 1981; Sorbom, 1981). A similar model in item 
response theory is found in Mislevy (1987), in which the mean of the examinee parameters, 

which represent a latent factor, is determined by auxiliary examinee variables. 

   In the possible applications of the models of several populations in social sciences, 

external variables which define subpopulations are socio-economic status, years of educa

tion, age and the like. 

   In this case, our interest is in the situation in which the parameters change continuous

ly with the external variables. The problem of development and decay of intelligence is 

an example of this case, where the population changes with age. In this paper, we develop 

a model in which the variance-covariance matrix changes continuously as a function of an 

external variable. The model is a natural extension of the analysis of covariance struc

tures in several populations.



versions of Ogasawara's (1986) model. He developed a model in which s, a score, was 
normally distributed according to N(g(y), 62(y)), conditional on an external variable y . 
And ii(y) and 62(y) indicate some specific functions of y . He applied the model to the 
situation in which the conditional distribution of adult intelligence scores depends on 

subjects' ages. Further, Ogasawara (1988) proposed a model in which the logarithm of a 

test score, given an external variable y, was distributed according to N(a(y) , 62(y)). 
   Before specifying our models we explain the notation used here . Let the number of 

dependent variables be p and s i be the column vector of these variables for the i -th 

individual, (i=i, --•, N), that is, 

                                             si Sli, S2i, •••, SQi), 

where ski denotes the value of k-th variable for the i-th individual . 
   Suppose the distribution of si depends on the observed value of yi, and hence si 

---N(p .ci, Xi ), where p, and Xi denote the values of fu and X when y=yi, which are the 

functions of y. These functions, arc and E, are specified by the vectors of parameters, 6,, 

and 66, respectively. Further, we assume that s i (i =1 , • • • , N) are mutually independent, 
that is, we consider only the cross-sectional data instead of the longitudinal one for the 

study of change. 

   In the case of the analysis of covariance structures in several populations, yi (i = 1, 
, N) are grouped and we can use tha likelihood of several independent Wishart distributions. 

However, in our case we cannot use this likelihood, since y changes continuously and the 
minimum size of the sample in which y takes the same value , yi is generally one. Thus, 
we have to consider the likelihood of the multivariate normal distribution. 

   The likelihood of 0, and e6, given s, , s2, • • •, SN and yl, Y2, **•, YN, is 
     L(O , 66I Sl, S2) •••, SN, yl, Y2, •••, YN) 

             r11 (27r) A/2 I ~i I 1/2eXp { laS'i ~i )~i l(si ~i )}. (1 ) 
                             i=1 

   Actual forms of ui and Xi should be specified according to each application . Hence, 
in this section we deal only with our model in a general form. 

   The negative of the logarithm of (1) is 

    f=-logL= 2p log (27r)+ 2 E log l 'Zi I +-X (si-1rci~EZ l(si-JUi. (2) iti 
We minimize (2) with respect to 9,. and 66, which is equivalent to maximizing (1), using 

the Fisher's scoring method (the Gauss-Newton method ; Lee & Jennrich , 1979). 
   Next, we consider the method of testing the goodness-of-fit of the model. In the case 

of grouped data, we can use the likelihood ratio test of the model against the unconstrained 

model. This follows from the fact that 

             F=E N` {log I £is1 l I +tr (S12 l)}-p (3) 

has the asymptotic X2 -distribution with d . f . = 2 gp (p + 1)  t, where g is the number of 
groups, Ni the sample size, t the total number of independent parameters, £i the fitted



covariance matrix and Si the sample covariance matrix in the i-th group. 

   In the case of non-grouped data, where populations are changing continuously, there 

is no appropriate statistic for assessing the goodness-of-fit of the model. But, the 

asymptotic standard errors and the AIC (Akaike, 1976, 1987) may be used for assessing and 

comparing models.

3. Various models 

3.1 Constant variance-covariance matrix model (multivariate regression model) 

   In this section we deal with a model in which the expected values of observed variables 
vary with an external variable, but the variance-covariance matrix is constant. Here, we 

do not consider the structure of the matrix. Therefore, 

                             Ei=E (i=1, •••, N). (4) 

   Equation (4) is often assumed in the case of multivariate regression analysis. 
   Now, we consider the following model. 

                               si=Byi+ei, (5) 

where ei i.i.d.N(O, .') and yi'=(1, yli, •••, yqi). y1i, •••, yqi are the values of q external 
variables for the i -th individual. The matrix B is the p x (q + 1) matrix of regression 

coefficients. In this case ui =Byi and, B, and 66 consist of B and the unique elements of 

E. The number of independent parameters is p (q + 1) + p (p + 1)/ 2. When a polynomial 
of degree q is chosen, we simply replace yi' by (1, yi, y2, •••, yq), others unchanged. 

   Let /3k1 be the (k, l)-th element of B. Then the partial derivative of f is 

                ~a~f =-21Yi'I1kE 1(si-Byi) 
                      Opkl i=1 

N 
                     =-tr{IlkE-1 (si-Byi)yi'} 

                                                            i=1 

N 

                   _ _ {E-1 Z (si-Byi )yi'}kl , (6) 
                                                     i=1 

where Ilk denotes a matrix of an appropriate size, only the (1, k )-th element of which is 

one, others zero. 

   The estimate of E follows from 

N 

           ~6k1 2 (2-okl )[N6k1 1}kl1, (7)                                                                          i=1 

where 6kl denotes the (k, l)-th element of E-1 and U kl is the Kronecker delta. 

    Except for the case, 1. 1=Byi, t cannot, in general, be obtained algebraically. For 

these cases we use an iterative method in the following way. Starting with an initial value 

of O, we replace 9, by an updated value. For E, we use 

                        N 
(8)                     _ N ~ (si ~i )(si fi ', 

which is obtained from (7). 

   We repeat the cycle until convergence is attained. The estimates of the variance

covariance matrix of parameters are obtained by



     E a2f  E         ao ao ')  i =1 MI. ae'. ' 

2 

    E\a6ala uv/ 8 (2-(3,,,)(2-8uv)Xtr{X-1(Ikl+Ilk)E-1(Iuv+Ivu)} 
                   A (2-(3kl)(2-(1uv)(6ku6ly+0kv6u11 (9) 

   The multivariate regression model represented by (5) is the model in which each 

dependent variable is predicted by the same set of independent variables. But, when the 
sets of independent variables are different from dependent variable to variable, the result 

of the univariate regression analysis is not in general equivalent to that of the multivariate 
one. The elements of B, corresponding to the independent variables which are not used 

for the prediction of each dependent variable, are zero (i.e. .uki (the k-th element of fLi )_ 

/3k1 +I3k2Y1 i + • • • +/3k, qk+lygk, i, when using the first qk yli's ). But, (6) holds for non-zero 

/3kl. Thus, when E is given, fl can be obtained algebraically. Conversely, when B is 
given, £ is obtained by (8). We update B and I alternately until none of the absolute 
value of the elements of a}/aO6 is greater than some small value. In this case the number 
of independent parameters in B is E k=pqk + p, where qk is the order of the polynomial for 

the k-th variable.

3.2 Constant correlation matrix model 

   Let D i be the diagonal matrix consisting of the standard deriations of observed 

variables for its diagonal elements when yi is given. Then

       61i 0 

Di= 62i . , (10) 

     0 bpi

Xi=DiRiDi, (11)

where Ri is the correlation matrix of p variables given yi. Now we consider the model, 

Ri = R (i =1, • • •, N). This is the model in which the scales of the variables vary with y, 

but the correlations are constant. 

   The model is 

                           Zi=DiRDi, (12) 

    and 

          Z N ".                               Di 1R 1D11(sift i ). (13) 

    Let Os' = (861/, B6k', B6p') and 86k'= (B6k1, "', e6kl, ' 86k, sk ), where s,, is the 
number of the independent parameters in 6ki• Assume that edk is related only to the k-th 

variable. Then the partial derivatives with respect to 86k1 and rkl, the (k, l)-th element 
of R, (k $ 1), are 

        of _ N 1 a6ki N 1 1 1 r a6ki (14a) 
              2 {R Di (si ui)(Si _ui) }kk e6kl '         aB6ki i=1 6ki aOdkl i=16ki 

N 

1 

             ark, =Nrk' 2 2 (si-fti)~Di 1R 1(Iki +I,k)R 1D11(si-Jcli ) iti



                =Nrk' {R` Z D2'(si-ui )(si -Iii )'Dt'R-'}k; . (14b) 
                                                            z=1 

   Setting (14b) equal to zero, 

N 

                  R= 1 E DZ'(si-ui )(si i) j5_1 (15)                              N
i=1 

   Thus, given D i and IA j, U =I, --•, N) , we obtain R algebraically. Next we have the 
information matrix as follows. 

     E a2f = afA Dt 1R-1Di 1 au',. (16a)         ao
, ae~  i = 1 ae~ ae~ 

                 2 N     E( a8601a86uv/ 2 Z tr{D2'R-'Dt'(IkkRDi+D=RIkk)D,'R-'D=' 
                                    (luuRD1+DtRluu)} aCki a6ui                                                      aekl ae6ua 

                  _ tr(Di'IkkD('Iuu+RIkkD1'R-'Dt1luu) a6k= a6uz 
                     i=1 ae6kl a86ua 

                   _ Uku+ rkurku adki a6ui (16b) 
                      i=1 6ki1ui ae6kl aeuv 

                2 N      ECa86klarmn/ 2 ~ tr{D,.'R-'Dt'(IkkRDi+D:Rlkk)Dz'R-'D;' 
                                       (DiImnDi+DilnmDi)} a6k i                                                   Alk 

N 

1 

               = 2 tr{(R 1D;'Ikk+IkkDt'R ')(I mn+Inm)} aB6kl 

N 

                 _ tr{(Imn+Inm)(R-1Di IIkk)} 
as kk Z'                                        i-i l 

(k#-m, k$n) E( a2f )=0,                 aO6kiarmn 

                      (32f _ N rmn a6mi (k= m) E( aecmlarmn /  21                                 iti 6mi " aedml 

                a2f _ N 21  rmn ) X a6ni (k= n) E( (16cae6n1drmn 6ni a86n1 
               2 N     E(arala uv) 2 E tr{D='R-,.'R1Di(Ikl+Ilk)DID='R-1D71Di(luv+Ivu)Di} 

               = 2 tr{R-'(Ikl+llk)R-'(luv+Ivu)} 
                 =Ntr{R-'(Ikl+Ilk)R-'Iuv} 

                 =N(rkvrul+rkurlv). (16d) 

   The vector fti is specified by each application independently of Di. When 

polynomials are chosen for I.ci, the same discussion in the previous section applies here. 
The vector 66 consists of BS and the elements of unique off-diagonal elements of R. 
Suppose that fui and 6ki are described by polynomials. Let q1k and q6k be the orders of 

the polynomials for uki (the k-th element of ui) and 6ki, respectively (i.e. 6ki=e6kl+86k2Yi 

+ + e6k, q6k+1 yg6k )• Then the total number of the independent parameters is E k 
+q6k)+P(P+3)/2.



3.3 One-factor model 

   In the following two sections, we deal with factor analysis models. We assume two 

types of changes with an external variable in the case of factor analysis. The one is the 

change of factor loadings and the other is that of the variance-covariance matrix of factor 

scores. 

   In this section, we deal with the change of factor loadings in a particular case where 

the one common-factor structure is assumed. The model is 

                            Gi=.liAi'+ W2, (17) 

where )i is the vector of the factor loadings of a single common factor and !' i is the 

diagonal matrix consisting of the factor loadings of unique factors, given yi. 

   Let /`ki be the k-th element of Ai and BAk be the vector of the parameters with respect 

to the k-th variable. Let OAkl be the l-th element of OA,. Similarly, 0"k and 00k, are 

defined. Further, we suppose that each parameter in Ai and !/ i corresponds to only a 

single variable. 

   The derivatives except those for e,, are 

                    N 
/ '                   {(~i 1-~i 1\Si /--i)(Si ui )',Zi 1 )^i}k-th row aAki (18a)           aOAkl i=1 aOAk1 

            of = E (Ei 1-Xi 1\Si ft i )(sI lui U i 1 )k k yVki aOkt (18b) 
             ae4kl i=1 aerpkl 

 E aaeAUU 2 E tr{Xi 1(ekAi'+Aiek)Ei'(euli'+AIeu')} aAki aAui    C aOAkl  aOAkl aAAu. 
                 N ~ aA  ~tr(Zi 1ekAi'Zi 1euAi'+Zi lekAi'Zi 1/lieu') aeAktl aeAuv                                i=1 

                  N 
, 

                 {(„i'Z 1ek)(ni'Ei 1eu)+(Ei')kuAi'Xi 1-1i) a~ki a~ui (18c)                  i=1 aOAkI aAAuv 

 E( a2f / = Z tr{Xi 1(ekni'+Aiek' )Xi Iiuuoui } aAki aOui      3OAk1aO%UV i=1 (Akl 0O uv 
                 N a/ ki UWui              2 x V M 1/l                            ~i)u ~~~ui (18d)                -('i1)kit `/'                    i=1 aeAkl aeOuv 

                     71 

                             
1 (.yi 1 )ku Okiy ui ay ki aOui (18e) 

          E( ae0k,,2f 12fae00V )=2 x i=                                            ae~kl ao Ouv 

where ek is the p-dimensional vector, the k-th element of which is one, others zero. 

   The discussion on ui is the same as the previous section and is omitted here. The 

vector B, consists of ®A1, •••, GAP, 8,p1, , O op. Suppose the polynomials for p.,, 2i and ?Fi, 

then the total number of the independent parameters for this model sums to k=1(q,,k + qAk 

+q0k)+3p, where qAk and gSbk are defined in the similar way to q,,k (i.e. Aki=OAkl+OAk2yi 

+ • • • + 1Ak, gAk+1-yigAk, Oki  e10k1 + e16k2yi + • •' + eck, q~4k+1,y~~k )

3.4 Oblique multiple-factor model 

   In this section, we deal with a model in which factor loadings remain unchanged, but 

the variance-covariance matrix of oblique factors changes with an external variable. 

Factor loadings are the regression coefficients of observed variables onto factors and 

represent the properties of the measurement of observed variables. Thus, we can assume 

that factor loadings are constant when the measurement properties are the same in spite



of the change of the external variable. But, still in some situations covariances among 

factors change, since they reflect individual values of latent variables, which may be very 

likely to change. 

   The variance-covariance matrix of the observed variables, given yi is 

                         Ei=AOiA'+ Wi (19) 

where A is a p x q (the number of common factors) matrix of factor loadings and of and 

Y' i are the variance-covariance matrices of common factors and unique factors given yi, 

respectively. This model is an extension of Joreskog's (1971) model in which Oi and Wi 

have different values from group to group. 

   Now let T be a q x q non-singular matrix. If we replace A and Oi by A T and 

T-' Oi T'-', respectively, (19) is unchanged. That is, the model (19) has no identification. 

Therefore at least q2 constraints must be imposed. The situation is the same as in the case 

of single population. But in the latter case the variances of common factors are often set 

to one and (q' q) constraints are imposed on A and 0. Thus, the off -diagonal elements 

of 0 are interpreted as correlations. But in the case of (19) we cannot use this method, 

N since Oi varies with i. It may be appropriate to set (1/N )Z Diag(0i)=I or to impose q2 
                                                                                                     i=1 

constraints on A. 

   Now we derive the partial derivatives and the information matrix except those for e,. 

Let Akt be the (k, l)-th element of A and, Opkjt be the l-th element of the vector, 0Spkj, 

which consists of the parameters with respect to cpkj, the (k , j)-th element of 0i. 
Similarly, B,W, 00k and cbki are defined. Again we suppose that each parameter in 0i and 
?J i corresponds to a single variable . The final expressions in the following equations are 

set to conform to the results shown by Joreskog (1971) in the case of several populations 

as much as possible. 

    3 1 N 
     a/lkj 2 Etr[{Ei'-Y,. Iti)(st Iti)'Ei'}(IkiOiA'+A(Diljk)J 

N 

  _ [{X '-X '(si-fci -'")'z'--1)AOi]kJ . (20a) 
                       i=1 

                           N 

n      ae~kjl 2 (2-8kj)E [`1'{Ei'-E-1ui )(si-fti )'Ei'}A]k~ ae~k t (20b) 
      of 1 T, {E

i 1-1z 1(si ui)(si ui )'Ei'}kk ask (20c)       aaSbkt 2 i=1 ae,4'kt 
               2 N     E(a~aja~st / 2 E tr{Ei '(Ikj0iA'+A 0Jjk )Ei 1(IstOiA'+A 0iltS )} 

N 

                = E tr(Ei 1Ikj0iA'Ei'AOilts+Ei'A0iljkXi'AOilts ) 
                                    i=1 

                         ~N1 ~ ,7                  L~ {(Ei')Sk(OiA'Ei'A0i)jt+(Ei'A~i)Sj(Ei'AOi)kt}. (20d) 
                                       i=1 

        2 N 
n agpsti E a f 1-(2-Sst)Etr{Et'(Ikj0i`1'+AmiIjk)ET'A(Ist+Its)A'}   aA

kjae1Pst1 4 i=1 ae9stt 
                 1 " 1 1 1 /~ 1 a9sti            (2-a St)21tr(A Et IkjOiA Et AISt+A Et Ikj0iA Et AIts)                2 i=1 aeq)stt 

                      S ~N1                                                                                                                                     7-sti             1 (2-a st)E {(A'Ei')tk(OiA'Ei'A)js+(A'E= 1)Sk(OiA'zi'A)jt} a~n                 2 i=1 ae9sti



                                                  (20e) 

    E(aA aae~uv ̀2 Etr{1i 1(Ikjy'iA'+A0iljk)Z lluuj "uv 

N 

                   tr(Zi 1 A (PiljkZ1 lluu) 1 0'Puv                                      i=1 

N             ~ (Ii 1A 0i)u;(Ei 1 )ku a~ uv • (20f ) 
                                     i=1 

    E( a2f ) 1(2-13 kj)(2-Ust)Ztr{Xi 1A(Ikj+Ijk)A'         aelPkjla8Pstm 8 i=1 

                                        ~i 1L1(Ist+Its)A'} aq)kji _Qsti                                                       ae
g)kjl aecStm 

                                                  S N                 = 4 (2-8kj)(2-(3st)Etr(A'XT 1AIkjA'Xz 1AIst 
                                       +A'~i 111Ikj11'Gf 1AItS aq)kji a9Sti                                                       aO 

kjl ae9)1tm 

N 

                  1 (2-akj)(2-a st)Z {(A'Xi 1A)tk(A'1i 1A)js 

                          + (11'_Yi l n )Sk(A'G z 1 n )jt J a9kji a7-Sti (20g)                                        L1 11 ao
Qkjl aoPstm 

             a2f _ 1 S N ~-+ 1 ~1 11 acokji aOui     E(ae~kjlaa0uv) 4 (2-Ukj)Ztr({Gi A(Ikj+Ijk)A Z J ae9kjl aeOuv 
                                S N ^ a`f              = 2 (2-6 kJ) (A'Xi 1 )ku(A'Zf 1 )ju a9 iil aB~u vuv (20h) 

   E(00 k ae~;m) 2 tr(~i 1`1lkk~+i 1AIjj) ae kil ae jm 
               _1 Z (Xi 1 )2kj ay k: aO,= (20i )                      2 

i=1 wok l aaojm 

   The discussion on ft i is the same as before and is omitted here. We suppose 

polynomials for uki, 9kji and %ki and that q2 elements of A are pre-assigned. Let glkj, and 

q,1k be the orders of the polynomials for Spkji and Oki (i.e. cOkji = OWkj,1 + O kj,2yi + 
          99ki = B + + 6 90k ) The total number of parameters + e~kj,9~kj+lyi , ki ~bk,l + Blbk,2yi 6k, qBk+lyi 

   P q 

is E (qpk+qmk)+ E g4lkj+pq-q2/2+2p+q/2 . 
   k=1 k5j

3.5 Description of change 

   Although in the earlier sections 6k , Ak and the elements of 0 and ¶ were the functions 
of y, actual expressions of these functions were not given up to here except for 

polynomials. We have to specify appropriate functions carefully considering characteris
tics of the application situation. However, for descriptive purposes and to confirm roughly 

the tendency of change, polynomial functions may be used. In the analysis of covariance 

structures in a single population, Ogasawara (1979) and McDonald (1980) used polynomial 

functions for expressing the relationships between factor loadings.

4. Examples 

4.1 Data 

   The data which will be analyzed in the following sections, is the same as that of



Ogasawara (1986). The ability tests A, B and C (tentative names) consist of four, six and 

two subtests, respectively, which are administered with time limits. The task, the time 

limit and the number of items for each subtest are shown in Table 1. The first halves of 

Tests A, B and C are supposed to measure mainly perceptual speed. The second halves 

of them measure mainly abilities of reasoning and spatial orientation, and are relatively 

difficult compared to the first halves. 

   Subjects were Japanese railway employees aged 20 to 54. Tests A and C were 

administered to the same subject group and Test B to part of this group and another group. 

The numbers of subjects of Tests A and C, and Test B were 1495 and 1493, respectively. 

These data do not show noticeable group differences except for age. 

   The scores of the tests are the numbers right, except that the score of Subtest 131 is 

the number right minus the number wrong.

    Table 1 

Contents of subtests

4.2 Application to the data of Tests A and C 

   All the foregoing models were fitted to the data of Tests A and C. The vectors and 

matrices p, a, 1, 2 and qi were supposed to be expressed by polynomial functions of age, 

y. We used the results of the separate analysis for each variable (Ogasawara, 1986) to 
specify the orders of the polynomial functions in I.e. He showed that the orders of 

polynomial functions in the elements of ft, which minimized the AIC, were 2, 3, 1, 1, 2, and 
2 for Subtests Al, A2, A3, A4, C1 and C2, respectively. (In the original paper, the optimal 

order of the polynomial for A4 was 3, but should be corrected to be 1.) These polynomial 

functions were used for fitting the foregoing models. As a result, it was shown that none 

of the absolute t-value (estimate/estimate of standard error) of the coefficient for the 

highest term in the polynomial function in each element of ft was less than 2, indicating 

adequacy of the model of ft. 

   With respect to a the orders of the polynomials of the minimum AIC in Ogasawara 

(1986) were 0, 1, 2, 2, 0 and 1 in the order of the subtests, where "0" meant that the standard



deviation of the subtest score was constant. 

   We fitted twelve models named Models 1-12, the results of which are shown in Tables 

2-6.

                      Table 2 

Results of fitting the constant-X model and the constant-R models 

              to the data of Tests A and C

                      Table 3 

Results of fitting the one-factor models to the data of Tests A and C

   Table 2 shows the results of fitting the constant variance-covariance matrix model and 

the constant correlation matrix models (hereafter referred to as "constant-X model" and



                      Table 4 

Results of fitting the two-factor models to the data of Tests A and C



"constant -R model") . The AIC of the constant-I model is much larger than that of any 

constant-R model, showing inadequacy of the constant-I model. In Model 2 (the con

stant-R model), the absolute t-value of the coefficient for the highest term in the 

polynomial function (hereafter referred to as "t-value") for Subtest A3 is small. Hence, 
replacing the order by 1, we have Model 3, the AIC of which has decreased slightly from 

Model 2. Table 2 shows the estimate of R in Model 3, suggesting the two groups of 

Subtests (Al, A2, Cl and A3, A4, C2). We stopped fitting other constant-R models, since 

all the t-values in Model 3 were large enough.

             Table 5 
Estimated values at various ages (Model 11)

                       Table 6 
Estimated values of the parameters in the grouping method (Model 12)

   Table 3 shows the results of fitting the one-factor models. Initially, the orders of 

polynomials for A and Diag ([') were set to those for a which had been supposed to be 
appropriate by Ogasawara (1986). Reducing the orders of polynomials which have small 

absolute t-values, we have obtained the minimum AIC model (Model 6) in the one-factor 

models. But the AIC was much larger than that of the constant-I model or any constant

R model. 

   Table 4 shows the results of fitting the two-factor models. Four elements of A were 

set to be 3 or 0. That is, the scores of Subtests Al and A3 were made to be the reference 

variables representing Factor 1 and Factor 2, respectively.



   In Model 7, all the elements of 0 and Diag ([J) were set to be constant. This model 
is different from the ordinary factor analysis model in that the means of observed variables 

change with an external variable y. All the t-values in A were large except that of 
Factor 1 for Subtest A4. In Model 8, the loading in this position was set to be zero. In 

addition, in this model, all the orders of polynomials in 0 and Diag (W) were set to be one 
in order to check the linear tendency of change. 

   The AIC of Model 8 decreased considerably from Model 7. But the t-values with 
respect to 9)11, P2, and the elements of Diag (U') for Subtests Al, C1 and C2, were still small. 

Hence, the next model, Model 9, was fitted to the data setting the orders in these positions 
equal to zero and remaining orders to two to investigate appropriate orders. Although the 

AIC again decreased, the t-values of 922 and the elements of Diag (W) for Subtests A2 and 
A3 were small, indicating that only the order of the polynomial of Diag (W) for Subtest A4 

should have been increased. Hence, restoring the orders of the polynomials with small t
values and increasing the order of Diag (!11) for Subtest A4, Model 10 was fitted to the data. 

The result shows that the order of the polynomial which was increased, should have been 
as before. 

   Model 11 was the final model, where all the t-values were large enough to stop fitting 
other models. The AIC of this model is the smallest in all the models fitted, but not so 

different from that of Model 3(the constant-R model). From the pattern of A in the 
results of fitting Model 11(Table 4), we see that the first halves and the second halves of 

Tests A and C represent different abilities in spite of the situation where the means and the 
variances change with age. 

   For illustrative purposes we show some of the estimates of the means and the factor 
variance-covariance matrices in Model 11 as follows: 

   u 1=8.44+0.623y-0.0106y2, 

   92= 2.79+ 1.74y -0.0482y2 +0.000388y3, 

    022=1.41-0.0170y, 
     `V1=7.64, 

     2=3.92+0.0810y, 

   Table 5 shows the estimated values of the variances and the covariances of factors 
fitted by Model 11 at several ages. In the elements of O, 022 decreases with age, others 

constant. Among the diagonal elements of 4I1', the one for Subtest A2 increases, the one 
for Subtest A3 decreases and the one for Subtest A4 increases for a while and decreases 

with age, respectively. As a whole the variances of both the common and the unique 
factors corresponding to the second halves of Tests A and C tend to decrease with age. On 

the other hand , those corresponding to the first halves of the tests seem to be relatively 
constant. 

   The correlation between the two common factors calculated from (b is also included 
in Table 5, showing the increasing tendency with age reflecting the fact that only the 

element, 022in 6 decreases with age, others constant. 
   The results of fitting the model by the grouping method are presented in Table 4. The



age groups are defined by the equal length of age interval (five years), that is -24 , 25--29, 
... ' 50-. The model is identical with Joreskog's (1971) one, which consists of a common 
A to the age groups, and jet, 0, and W, peculiar to the i-th group. The pattern of A in 
Model 12 is similar to that of Model 11. However, the AIC is much larger than that of 
Model 11. Table 6 presents the &Z' s , i','s and the correlations between the two common 
factors, in which we see the tendencies which vary with age. But, the results also reflect 
the sampling variations. Thus, Model 11 has advantage over Model 12 not only in view of 

AIC but also taking into account the tendency of development and decay of intelligence 
with age.

                      Table 7 

Results of fitting the constant-E model and the constant-R models 

                 to the data of Test B

4.3 Application to the data of Test B 

   As for the data of Test B, the separate analysis of each observed variable by 

Ogasawasa (1986) showed that the appropriate orders of polynomial functions for ft were 

2, 2, 3, 3, 3 and 2 in the order of the subtests. And the appropriate orders for 6 were 0, 1, 
1, 1, 0, and 1. 

   We fitted thirteen models named Models 1-13, the results of which are shown in Tables 

7-11. 

   Table 7 shows the results of fitting the constant-X model (Model 1) and the constant

R models to the data. In view of the AIC, Model 1 obviously lacks the goodness-of-fit to 

the data, favoring the constant-R models. But in Model 2 the t-value of a for Subtest B3 

is not large enough. Reducing the order of the polynomial in this position leads to Model 

3. But the comparison between the two models is difficult, considering both the t-values 

and the AIC's. 

   Table 8 shows the results of fitting the one-factor models to the data. The large AIC's



indicate that an additional factor is needed. 

   Table 9 shows the results of fitting the two-factor models. For identification of 

model, the scores of Subtests B1 and B4 were set to be the reference variables, representing 

Factor 1 and Factor 2, respectively.

                    Table 8 

Results of fitting the one-factor models to the data of Test B

   In the results of fitting Model 6, the t-value of the loading of Factor 1 for Subtest B5 

is small. Thus, the next model, where the order of the polynomial was replaced by zero 

(constant), was fitted. Since the revised model, Model 7, did not show the improvement of 
the AIC and the just identified model would be useful to grasp the tendency of 0 and ¶ 

independently of additional restrictions on A, only the four elements of A were set to be 

fixed. The models, where the orders of polynomials for 0 and Diag (!1T) were one (Model 

8), two (Model 9) and again one (Model 10, 11, 12), were fitted successively. 

   Models 10, 11 and 12 show the similar values of AIC less than those of other two-factor 

models. Among the elements of c in Models 10 and 11, 02, and 012 decrease with age. 

Although the t-values of IP21 and rp22 in Models 10 and 11 are not large enough to conclude 

the change occurred with age, the two of the subtests in the second half of Test B show the 

significant decrease of Diag (!11') with age, which is the similar tendency in the case of Tests 

A and C. 

   In contrast to the case of Tests A and C the correlation between the two common 

factors decreases with age in Model 11 (shown in Table 10) or is constant in Model 12. 

   We present some of the estimates of the means and the factor variance-covariance 

matrices in Model 11 as follows : 

   u 2 = 27.2+0.192y -0.00566y2, 

   i 3 = 1.64 + 2.45y  0.0702y 2 +0.000579Y 3, 

   021=0.997-0.00452y, 

   022=0.993, 

   05=6.02, 

   0s=32.0-0.386y.



                    Table 9 

Results of fitting the two-factor models to the data of Test B



Table 9 (continued)

            Table 10 
Estimated values at various ages (Model 11)

                      Table 11 
Estimated values of the parameters in the grouping method (Model 13)



   The results of Model 13 (the grouping method) show that A is similar to those of the 

previous models. In view of the AIC, Medel 13 seems to have advantage. However, the 
grouping method does not consider the tendencies of the changes of the subtest scores with 
age. Further, since the original data is not grouped and the grouping method depends on 

how to group the non-grouped data, we do not accept Model 13. 
   In the data of Tests A and C, the optimal model was the oblique two-factor model 

(Model 11), but the AIC of which was not so different from that of the constant-R model. 
In the case of Test B the optimal model was the constant-R model . Thus, we conclude 
that the correlations between the subtests are relatively constant in spite of the change of 

0 and V. In addition, we obtained the tendency of continuous changes of the variances 
and the covariances of the factors, which had not been possible until our model was applied.

5. Some concluding remarks 

   The models we have proposed in this paper deal with the moments which change 

continuously with an external variable. These models are not covered by present com

puter programs such as LISREL and COSAN. Up to now, these problems have been dealt 
with by grouping data accordng to some criteria . However, considering the loss of 
information by grouping and the difference of results made by the difference of grouping 

methods, we feel that the proposed model should have some advantages over the grouping 

methods. 

   But, the proposed model requires much CPU time, because the calculation of the 

gradient vector, the expected value of the Hessian matrix and the inverse of Et is very 
time-consuming. One of the reasons for this is that E_ ' must be computed for each i , (i 
= 1, • • •, N)) at each iteration. The CPU time can be reduced considerably by computing 
only the several E; 1's corresponding to typical i's at each stage of iteration. After the 

iteration converges, we can obtain the exact value of the information matrix. 

   In the previous examples, age was the only external variable. But, in general, 

multiple external variables may be considered such as age, years of education and income . 
But, this extension should not be very difficult, and, in fact, the algorithm necessary for the 

calculation of polynomials can be used for the multiple external variables, as was described 

in 3.1. In addition, the combination of discreate external variables, e.g. sex, and continu

ous variables may be possible.
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