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  Asymptotic standard errors of the estimates of the obliquely rotated param
eters by the Harris-Kaiser Case II orthoblique method are derived under the 
assumption of the multivariate normal distribution for observed variables. A 
covariance structure model for observed variables is constructed such that both 
unrotated and orthogonally rotated parameters are involved in the model. The 
asymptotic standard errors for the final oblique solution (orthoblique solution) 
are derived by a stepwise method. First, the asymptotic variance-covariance 
matrix for the estimates of the unrotated and orthogonally rotated parameters 
is derived. Second, the delta method is used to obtain the asymptotic variances 
of the estimates of the obliquely rotated parameters. Results by simulation in
dicate that the theoretical values of the asymptotic standard errors are close to 
simulated ones.
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1. Introduction 

  In factor analysis, principles of deriving the asymptotic standard errors for the 

estimates of rotated parameters (factor loadings and correlations) were given by 
Archer and Jennrich (1973) (see also Jennrich, 1974), and Jennrich (1973) for 
orthogonal and oblique rotations, respectively. For actual orthogonal rotations, 

Archer and Jennrich (1973) showed the asymptotic standard errors for the raw 
orthomax solution and Ogasawara (1996) gave those for the normalized orthomax 
method. For oblique rotations, Jennrich (1973) provided the asymptotic stan
dard errors of the estimates of rotated parameters by a generalized version of the 
Crawford-Ferguson family which includes the raw direct-oblimin method as a spe
cial case. Ogasawara (1998) and Ogasawara (1999) gave the asymptotic standard 
errors for the promax solution and various solutions of the procrustes rotation, 
respectively. Browne and Du Toit (1992) gave the asymptotic standard errors of 
rotated factor loadings using a numerical derivative. (For actual statistical tests 
using the standard errors of rotated parameters, see Cudeck & O'Dell, 1994.) 

  The purpose of this paper is to derive the asymptotic standard errors for pa
rameter estimates by the Harris-Kaiser Case II orthoblique method (Harris & 
Kaiser, 1964) with the assumption of the multivariate normal distribution for ob
served variables. The Harris-Kaiser orthoblique method is one of the prominent 
oblique rotation methods for obtaining simple patterns in addition to the direct 
oblimin (especially direct quartimin) and promax methods (Hakstian, 1971; Hak
stian & Abell, 1974; Harman, 1976, section 14.6). The Harris-Kaiser orthoblique 
solution has three variants (Cases I, II and III), which will be explained in the



second section. Among the orthoblique solutions, only the Case II solution is 
currently used and is included in the statistical packaged program SAS (SAS 
Institute Inc.. 1990). The Case II orthoblique method is not a special oblique
rotation method with particular purposes such as the procrustes rotation method 
with a target matrix. Note that the Case II orthoblique method is one of the 
rotation methods for deriving simple patterns. Recently, the orthoblique method 

(especially the independent cluster solution) has attracted attention in the field 
of components analysis (Kiers & Ten Berge, 1994: Kiers. 1997). The method in 
this paper can be applied to the results of components analysis as well as to those 
for factor analysis. 

  The method of deriving the asymptotic standard errors for the parameter 
estimates of the Case II solution is based on Jennrich (1974). That is, the standard 
errors are obtained from an augmented information matrix for the parameters 
with restrictions to identify a factor analysis model. However, since it is difficult 
to apply this method directly to the orthoblique solution, the rotated solution 
is reparameterized so that the method of the augmented information matrix can 
be applied. The asymptotic standard errors of the final solution is obtained by 
using the delta method (see e.g., Efron & Tibshirani, 1993, Section 21.9) and the 
relationships between the final solution and the reparameterized solution.

2. The Orthoblique Method 

  The orthoblique method is based on the following principle. Let p and k 

(k < p) denote the numbers of observed variables and common factors in an ex
ploratory factor analysis model, respectively: and E (px p) be a covariance matrix 
for manifest variables. Then, E is written as:

E=h+qi (1)

where r is a nonnegative definite matrix with rank k and ' (p x p) is a diagonal 
matrix with the diagonal elements being the variances of unique factors. The Case 
II orthoblique rotation utilizes the following decomposition of F in (1) followed 
by stepwise transformations and rescalings:

F = QI2Q' = QM (QM)' 

 = QD2TD1 (D1T1D1AI2D1TD1) i 2 2 i D1T'D2Q' (2)

(Harris & Kaiser, 1964: see also Harman, 1976, section 14.6), where Q (pxk) is a 
matrix whose columns are the normalized eigenvectors of F (i.e., Q'Q = Ik and 
Ik is a k x k identity matrix): M2 is a diagonal matrix with the diagonal elements 
being equal to the eigenvalues of F arranged in descending order: T (k x k) is an 
ortho-normal matrix (i.e., VT = Ik. ): and D1(k x k) and D2 (k x k) are diago
nal matrices. The matrix D2 is a scaling matrix for the ortho-normal matrix Q. 
This scaling gives a new unrotated matrix QD2, which is further orthogonally



rotated by the matrix T. These stepwise transformations of Q give an oblique 
solution with the factor covariance matrix T'D21M2D2 1T. The diagonal ele
ments of D1 are the standard deviations of the obliquely rotated factors, that 

is, D1 = [Diag (T/D1Al2D1T)] 221/2, where Diag(.) indicates a, diagonal matrix 
whose diagonal elements are those of the parenthesized matrix. Consequently, 
B = QD2TD1 and 4 = Di 1T'D21M2D21TD1 1 are the loading and correlation 
matrices of the obliquely rotated factors. 

  When D2 = M, (2) is reduced to

r'= QMTT'MQ'. (3)

This is the case of ordinary orthogonal factor rotation, where QM is an unrotated 
loading matrix and T is a transformation matrix, The model of (3) is called Case 
I. The matrix T in (2) gives possibly a simple pattern QD2T. In the case of 
D2 = Ik = M°, the obliquely rotated loading matrix B is QTD1 and B'B becomes 
a diagonal matrix D1. From this property, the case with D2. = Ik is called the 
independent cluster solution. When D2 = M1/2, we have B = QM1/2TD1, which 
gives

B'B = D1T'MTD1 (4)

and

4) = D11T'MTD1 1 = D12 (B'B) D12. (5)

Since B'B is a rescaled matrix of 4), this is called the proportional solution. In 

Case II a general solution which includes the above two solutions is represented 

by

D2=AIW(0<w<1), (6)

where w = 1 is not included in its domain since w = 1 corresponds to Case I 

(see(3)). In SAS, users can set a value to w. 
  In addition to Cases I and II, we have Case III, which uses an orthogonal 

matrix QT* with T *'T * = Ik in place of Q in Case II. The obliquely rotated load
ings and the factor correlations become somewhat involved but can be obtained 
straightforwardly. The Case III solution was used by Hakstian and Abell (1974). 
However, the author has no knowledge about actual use of Case III other than 
that. Therefore, here only Case II is considered among orthoblique solutions.

3. Covariance Structures for Orthoblique Solutions 

  The parameters in (1) with (2) depend on the scales of the observed variables. 
However, in behavioral sciences standardized observed variables are usually used. 
For this case. (1) should be replaced by

E=E(I'+Diag(Ip-r))E 

 = EPE (7)



(see e.g., Jennrich, 1974), where E (p x p) is a diagonal matrix whose diagonal 
elements are the standard deviations of unstandardized observed variables and P 
is a correlation matrix of the observed variables. 

  The parameters of interest are B, 4 and T which describe the model of un
standardized variables (see (1) ), and B, T and E for the model of standardized 
variables (see (7)). The asymptotic standard errors of the parameter estimates are 

given from the asymptotic variance-covariance matrix of the parameter estimates. 
However, it is not easy to obtain them directly by the usual method using the 
information matrix with restrictions among the parameters since the obliquely 
rotated parameters by the orthoblique method are given by the stepwise method 
mentioned previously. 

  Thus, we employ the following method for deriving the asymptotic standard 
errors of the parameter estimates:

Step 1. Instead of B and 4) for the Case II solution, we use a reparameterized 
    matrix U (QM21T) (an orthogonally rotated matrix by T) with associated 

    matrices Q, M, T, IF, (or E). It is not difficult to obtain the restrictions 
    for U since U is an orthogonally rotated loading matrix with an analytical 

    criterion such as the varimax criterion. 

Step 2. The asymptotic variance-covariance matrix for U and other associated 
    parameter estimates is given by the inverse of the augmented information 

    matrix for the reparameterized matrices Q, M, T, U, 'Y, (or E). 

Step 3. Since the matrices B and 4) are functions of the reparameterized matrices, 
    the asymptotic variance-covariance matrix of b and 4 is obtained from the 

    asymptotic variance-covariance matrix of the estimates of the reparameter
    ized matrices by using the delta method.

  Step 1. The matrix F in (1) and (7) can be transformed into the following 
asymmetric matrix which includes both the unrotated and orthogonally rotated 

results for Case II:

F = QMZ-WTU' with U = QM21T, (8)

where U is an orthogonally rotated loading matrix without resealing factor D1. 

Rewriting D1 as simply D,

D = [Diag (T'M2_2wT)]'/2, 
B=UD and 

4) = D-1T' A12-2wTD-1

(9)

follow. The obliquely rotated loading matrix B is a resealed version of U. Note 
that an optimizing function h (U) of the orthogonal rotation (e.g.. the va.rimax



rotation) given by T is with respect to U rather than B. This is the reason for 
inclusion of U in (8). 
  The parameter estimates whose standard errors are to be estimated are the 

non-fixed and non-duplicated elements of B, 4) and T (or E ). Since B and 4) 
are functions of T, A7 and U (see (9)), the asymptotic variances-covariances for 
the estimators b and 4) are obtained if those for t, M and U are given. The 
asymptotic covariance matrix for T, M and U with associated matrices Q,  (or 
E ) is derived from the covariance structures (1) or (7) with F replaced by (8).

4. Asymptotic Standard Errors for Rotated Parameter Estimates 

  Step 2. Let the following equation be a general restriction for the reparame

terized parameters:

g (Q; M; T; U; IF (or E)) = 0, (10)

and IA be an augmented information matrix for the parameters with the assump
tion of the multivariate normal distribution. Then, the submatrix 1*(.) in the 
inverse of IA,

                                       -1 

-1 I (Q; M; T; U;'(or E)), ag I
A = ag 00 

o              001, 

_ I* (Q; M; T; U; T (or E)), # 
                  # , /!

(11)

is the asymptotic covariance matrix of the parameter estimates (see e.g., Silvey, 
1975), where I(.;...;.) is the information matrix for the parameters in parentheses 
and is shown in Appendix 1; 0 is the column vector consisting of the parameters 
in the model; and #'s indicate submatrices which will not be used here. 

  The constraints (10) on the parameters and the partial derivatives in (11) are 
obtained as follows. From U = QMW T the first restriction is written as

g1 = vecG1 = vec (U  QMWT) = 0, (12)

where vec(.) denotes a column vector consisting of the columns of the parenthe
sized matrix in consecutive order. The restriction comes from the redundancy 
of including U for the description of the covariance structure models (1) and 

(7). Let glij = (G1)ij, where (.)ij indicates the (i, j)th element of the matrix in 
parentheses. Then,

(991ij = bisbjt, (i, s = 1, ..., p; j, t = 1, ..., k) , 
aUst 
a91ij = -Sis (11IwT)tj , (i, s k), 
agst



a91ij = _giswmss 1tsj, (i = 1, ..., p; j, s = 1, ..., k) , 
amss 
a91ij = _6jt (QA1w)is , (i = 1, ..., p; j, S' t = 1, ..., k), atst

(13)

where bis is the Kronecker delta (his = 1, i = s; his = 0, i s) . 
  The second restriction, which is from Q'Q = Ik , is described as

92 = vG2 = v (Q'Q  1k) = 0, (14)

where v(.) denotes a column vector consisting of the elements on or below the 
diagonal elements of the parenthesized matrix. Let 92ij = (G2)ij, then

a92ij = (ItsQ + Q'I ) _                 st ij (Satgsj + 6jtgsi, a
sst 

(i > j;s = 1,...,p;t = 1,...,k).

(15)

The third restriction from TIT = Ik is

93= vG3 = V (TIT  1k) = 0. (16)

Let 93ij = (G3)ij, then

a93ij = 6ittsj + Sjttsi , (i > j; s, t = I,-, k) . at
st

(17)

  The fourth restriction is for U which optimizes an analytical rotation criterion 

h (U). From Archer and Jennrich (1973), the restriction is described as

94 = vb (U° 'h(U)  ah(U)U = 0, 
         aU oU'

(18)

where vb(.) denotes a column vector consisting of the off-diagonal elements below 
the main diagonal of the parenthesized matrix. The actual expressions for (18) 
are given by Archer and Jennrich (1973) and Ogasawara (1996) for the raw and 
normalized-orthomax methods, respectively. From the above results, the overall 
restriction

9 = (9i, 92, 9s, 94)' = 0 (19)

follows. 
  The numbers of non-fixed and non-duplicated parameters in (1) or (7) with 

(8) are pk, k, k2, pk and p for Q, M, T, U and T (or E), respectively. Thus, 
the total number of the parameters is 2pk + p + k2 + k. On the other hand, 
the number of restrictions are pk, (1/2)(k2 + k), (1/2)(k2 +k) and (1/2)(k2  k) 
corresponding to the four subvectors in (19), respectively. The total number of 
the restrictions becomes pk + (1/2) (3k2 + k). Therefore, the size of the augmented



information matrix, which is the sum of the above two total values, is 3pk + p + 

(1/2)(5k2+3k), while the number of independent parameters, which is the number 
of the parameters minus that of the restrictions, is pk + p  (1/2)(k2  k) which 
corresponds to the number of independent parameters in an ordinary exploratory

factor-analysis model. 

  Step 3. The asymptotic variances for the estimates of the obliquely rotated 

parameters B and 1 are derived by using the delta method. That is, the asymp

totic covariances for J3ij and /3st (or for ~ij and cst ) denoted by acov (Aj, / st) 
(or acov (Oij, `Yst)) are

acov Nst) = a~32j , acov a0st 
           Op (U,M,T) ap(U,M,T) 

(i's = 1)..., p; j,t = 1, ..., k), 

acov ~Vi j , Ost = a~2~ , acov M; T asst ,   ( ) ap (M,T) ( ) ap (MI T) 
(i> j;s>t),

(20)

where acov (U; 1VI ; t) and acov (M; t) are the asymptotic covariance matrix 
among the estimates of the parameters of the parenthesized matrices, which have 

been obtained in Step 2, and p(•,...,•) denotes a column vector consisting of the 
non-fixed parameters in the parenthesized matrices. Replacing the true values of 

the parameters in (20) by their estimates, we have the estimates of the asymptotic 
covariance matrix for the estimates of the parameters. The partial derivatives in 
(20) are given in Appendix 2.

5. Numerical Examples

  Numerical examples are based on two real correlation matrices. The first one 

is the correlation matrix of Lawley and Maxwell's (1971, p.66) six school subjects 

(N=220). The second one is the correlation matrix of Harman's (1976, p.22) 
eight physical variables (N=305). The number of common factors is assumed to 
be two for each example. When a model for unstandardized variables is fitted, 
the correlation matrices are supposed to be covariance matrices. Tables 1-4 give 
rotated results which include independent cluster solutions (w=0) and propor
tional solutions (w=.5), where the initial factor loading matrix was estimated by 
the maximum likelihood method, then QM2Q' was obtained as the spectral de
composition of f. The normalized varimax method was used for the orthogonal 
rotation applied to Note that the solutions in the tables are common so
lutions for unstandardized and standardized variables since the sample variances 
were assumed to be unities.



Table 1: Results of independent cluster solution (w=0) for six school subjects

Table 2: Results of proportional solution (w=.5) for six school subjects



Table 3: Results of independent cluster solution (w=0) 
       for eight physical variables (N=305)

Table 4: Results of proportional solution (w=.5) 
    for eight physical variables (N=305)



  In Tables 1-4 results by simulation are included and obtained in the following 
way. First, the correlation matrices for the observed variables constructed by the 
estimated parameters, were regarded as population covariance matrices. From 
the population matrices, random observations of the same sample size as that of 
each data set or an assumed sample size (explained later) were generated with the 
assumption of the multivariate normal distribution. From the sample covariance 

(or correlation) matrix obtained from the generated observations. the values of 
the parameters in each model were estimated. This was repeated 1,000 times 
and 1.000 estimates were obtained for each parameter. The SD in Tables 1-4 
are their standard deviations. The Heywood cases are not included in the results 
by simulation. The maximum and minimum numbers of Heywood cases until 
1,000 regular estimates were obtained in the sets of simulated data, are twelve 
and zero, respectively. For unrot.ated and rotated solutions, there remain the 
indeterminacies of signs and permutations in the columns of loading matrices. 
They are removed by the method of Clarkson (1979), which searches for the 

pattern most similar to the population pattern. 
  Tables 1 and 2 show the results for the six school subjects. The factor correla

tion for the independent cluster solution (w=0) is larger than that for the propor
tional solution (w=.5), which is a general tendency (Hakstian, 1971; Hakstian & 
Abell, 1974). For this case, a simpler pattern is obtained by the independent clus
ter solution than by the proportional solution. Overall, the theoretical standard 
errors for the rotated loadings in the case of the actual sample size seem to be 
similar to those by simulation considering the rather small sample size (N=220) 
for this example. However, some of the theoretical standard errors with the ac
tual sample size especially those for small loadings are somewhat underestimated. 
To see the effect of the sample size, the real sample size (N=220) was doubled 
and the theoretical and simulated values were similarly computed. Tables 1 and 
2 include the additional results for N=440. Note that the theoretical standard 
errors when N = 440 are 219/439 (" .7063) x [the theoretical standard errors 
when N=220]. The tables show that the differences between the theoretical and 
simulated values have been reduced by doubling the sample size. The standard 
errors for the estimates of the loadings for standardized variables are expected 

to be smaller than those for unstandardized variables since the loadings for stan
dardized variables are restricted such that the diagonal elements of the correlation 

matrix for standardized variables are always one. The results show these tenden
cies. Especially for large loadings, the differences between their standard errors 

for unstandardized variables and those for standardized ones are notable. 
  Tables 3 and 4 show the results for the eight physical variables. The inde

pendent cluster solution gives more correlated factors and a simpler pattern than 
the proportional solution. a tendency similar to that for the six school subjects. 

The theoretical standard errors are very close to those by simulation. For the 

difference of the results for unstanda.rdized and standardized variables, note that 
some of the theoretical and simulated standard errors for the large loadings for



standardized variables are about one third of those for unstandardized variables.

6. Discussion 

  By employing the expression of (8), the asymptotic covariance matrix of the 
estimates of the reparameterized parameters was given. However, the size of 
the augmented information matrix becomes rather large by including the new 

parameter matrix U. The inverse of the augmented information matrix must be 
taken, though it is only once. The size r of the matrix is equal to 3pk + p + 
(1/2)(5k2 + 3k) as was shown previously and increases with the size of p and/or 
k. The value r as large as several hundreds may be quite feasible for present 
computers. (Several thousands may be possible depending on machines.) It is 
also possible to reduce the size by modifying (8) such as

F = QA1,2-wTT'MwQ' = QM2TT'Q'. (21)

Using (21), the reparameterized parameters are Q, M, T and T (or E). Though 
the restriction gi = 0 is unnecessary for the expression of (21), the derivatives of 
the restriction g4 = 0 with respect to the parameters become somewhat compli
cated since 94 is now in terms of Q, M and T (see (18)). Let

    (G4) _ U,ah  OhU ,(k>i>j>1), 942 =  Z~  aU aU' 
                              ij

(22)

where h = h (U), and a parameter in p (Q, Al, T) be 0. Then,

094ij = OU' ah + U/49 Oh /86  a Oh, /a8 U  ah/ 8U 00 00 aU aU aU aU 00 ij(23)

follows, where

2 

a ah /00 = a 2 a ,t , (s = 1, ..., p; t = 1, ..., k) 
    8U St dust a

(24)

For this case, the number of the non-fixed parameters and that of the restrictions 
for the parameters are pk + p + k2 + k and (1/2)(3k2 + k), respectively. Thus, 
r = pk + p + (1/2)(5k2 + 3k) which is less than the value for the previous model 
by 2pk. 

  As was described in the introduction, the method of deriving the asymptotic 
standard errors for the Case II solutions in factor analysis can be applied to the 
standard errors of rotated component loadings. This can be performed in the 
following way. For simplicity, we consider the case for unstandardized observed 
variables. The covariance structure for principal component analysis can be de
scribed as

E=BBB'+BB'=QM2-WTU'+BB', (25)



where BFB' is a reproduced covariance matrix using the component loadings B 

and the component correlations I of the first k principal components followed by 

orthoblique rotation; and BB' is a residual matrix described by the component 

loading matrix B of remaining p  k orthogonal components. The form of the 

partial derivatives ag/a9' (see (11)) in the case of principal component analysis 
is similar to that for factor analysis with some additional restrictions such that 
Q'B = 0 (k x (p  k)) and B'B is diagonal. The information matrix should also 
be modified with I replaced by BB' in (11).
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Appendix 1. Information Matrix 

  Let L be the Wishart likelihood for the parameters in the covariance structure 

for unstandardized observed variables

E = QM'-wTU' + i (Al)

or the parameters in the covariance structure for standardized observed variables

E = E (QM2_uTu! + Diag (1,  QM2-21 T U')) E. (A2)

Then,

lnL =  2 [iniEI + tr (SE-1)] + constant, (A3)

where n + 1 = N is the number of observations and S is an unbiased sample 
covariance matrix. Let 9i and ej be the i-th and j-th parameters in the model, 
respectively, then we have the (i, j)th element of the information matrix:

I (8i,9j) = Ex (_a2lnL/aooo)                       ij

= n tr E-i DE E-1 DE 
       2 Dei aej (A4)

where Ex (•) denotes the expectation over the distribution of S. The matrices 
OE/00i in (A4) for unstandardized variables are as follows:

OE = II~AI2 ̀TU' DE _ (2  w) m1 W  u'QIjjTU', 
agij Dmjj 
OE = QM12-wIj1U', OE = QM12-wT1ji 
atjl Duij 
DE     = Iii (i = 

d'1'ii 1'...'P1311 = 11-1k)

(A5)

where Iij denotes the matrix of an appropriate size whose (i, j)th element is one 
and others are zero. The expressions for some of the pairs of the parameters in



(A4) become simple by expanding the trace such as

2 n 
1 aE _1 aE n _1 

2tr E a4Yij ~ a'Pjj 2 ~~ )ij (A6)

where (.) ij denotes the (i, j )th element of the matrix in parentheses. However, 

(A4) with (A6) is sufficient for exact computation. 
  On the other hand, the matrices OE/00i for standardized observed variables 

are as follows (see (A2)):

aE    = E (IM2_uTUf Zj  (I2_wTUt) ll j2 Iii E,  qij 

OF,     = (2  w) rn~-uE (QIjjTU'  Diag (QIjjTU')) E, 
am,.,
aE    = E (QM2_wIjiuF  Diag (QM2-wlj1U')) E, 
atjl 

aE _    _ E (QI2_wTIj2  (QAI2_WT) ij Iii) E, au2i 
aE     = IZZPE + EPIZi, (i = 1, ..., p; j, l = 1, ..., k). 
aeii

(A7)

Appendix 2. Partial Derivatives of the Rotated Parameters

  The loadings and correlations of the obliquely rotated factors by the Case II 

orthoblique method are

B = UD = U [Diag (T1 M2-2wT) ] 1/2 and 
(D = D-'T' M2-2wTD-1 

 _ [Diag (T'AI2_2wT)]2T'M2_2wT -1/[Diag (T'M2_2wT)] -1/2 

,

(A8)

respectively. The nonzero partial derivatives of B and P with respect to the pa
rameters employed in the covariance structures (1) or (7) with (8) are as follows:

a~3ij 
    _ (Sis(Sjt (D)jj, 

asst 

amss 2 [U (Diag (T'1112-2wT))-1/2 (2  2w) mss 2wDiag (T'ISST)] ij 
    = (1  u') mss 2w [UD-1Diag (T'ISST)] 

                                     ij ' 

at~st 2 [U (Diag (T'M2-2wT))-1/2 Diag (Its1~I2-2wT + T'M2-2wlst)]                                                                       J ij 

    = 6tj (UD-1) it (AI2-2wT) st , 00 It' _ [ 2 D-3 (2  2w) mss 2wDiag (T'IssT) T'_N12-2wTD-1 
amss



 +D-1 (2  2u) mss 2wT'IssTD-1 
 _ 2D-1TIM2-2wTD-3 (2  2u) mss 2wDiag (T'Is5T) ] uv 

_  (1  u) mss 2w [D-1 ID-2Diag (T'Is5T) T'M2-2wT  2T'IssT 
        + T'M2-2wTD-2Diag (T'IssT) }D-1] , 

                                                     uv

(A9)

096 ut' _ [  2D-3Diag (It5M2-2wT + T'M2-2wlst) T'M2-2wTD-1 
       +D-1 (jt5M2-2wT + T'M2-2wlst) D-1 

   _ 2D-1T'M2-2wTD-3Diag (It5M2-2wT +T'M2-2wjst)                           ] uv 
    = -Sut (D-1)tt (D-2)tt (M2-2wT)st (TI M2-2wT)ty  (M2-2wT)sv1 (D-1)vv 

     -d vt (D-1)tt [(D-2)tt (M2-2wT)st (T'M2-2wT)tu  (M2-2wT)su] (D-1) uu 
       (i = 1,...,p;j,s,t = 1,...,k;k>u. > v>1).


