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  The asymptotic correlations between differently rotated solutions in ex

ploratory factor analysis are derived. The solutions are orthogonally or obliquely 
rotated for unstandardized or standardized manifest variables. To obtain the 
asymptotic correlations between different solutions, the covariance models for 
manifest variables have been constructed so that two sets of solutions are in
volved in a single covariance structure. The asymptotic correlations can be used 
for the statistical test of the differences of rotated solutions. The correlation 
matrix between the rotated factors of the first solution and those of the second 
is also introduced in the models with appropriate restrictions to identify the 
models. The asymptotic standard errors of the estimates of the correlations be
tween the factors in different solutions are simultaneously provided. A numerical 
example is presented with simulated values.
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1. Introduction 

  Factor analysis is one of the most frequently used methods of multivariate 

data analysis in behavioral and social sciences. While confirmatory factor anal

ysis models as special cases of covariance structure models have been developed 

and well investigated in recent years, the statistical analyses for the results of ex

ploratory factor analysis especially those with factor rotation have not sufficiently 

been provided in spite of the huge amount of its usage in practice. 

  The formulas for the asymptotic standard errors of rotated factor loadings 

have been developed by Archer and Jennrich (1973) (see also Jennrich, 1974) 
and Jennrich (1973a) for orthogonal and oblique models, respectively. The actual 
results required to apply the above formulas to individual rotation methods have 
been given, for example, by Archer and Jennrich (1973) for the raw orthomax 
method, Jennrich (1973a) for the raw-oblimin method, Ogasawara (1996; see also 
1998a) for the orthomax method with Kaiser's normalization, Ogasawara (1998b) 
for the promax solution and Ogasawara (1999a) for the direct oblimin method with 
Kaiser's normalization. Methods using numerical derivatives for the asymptotic 
standard errors have been given by Browne and DuToit (1992) (see also Cudeck 
& O'Dell, 1994). For the standard errors of rotated loadings, Jennrich (1973b) 
showed statistically stable or unstable results caused by factor rotation, and called 
them the Wexler and anti-Wexler phenomena, respectively.

')The author is indebted to an anonymous reviewer for helpful comments and suggestions .

  The purpose of this paper is to derive the asymptotic correlations among dif

ferently rotated solutions in factor analysis under the assumption of multivariate



normality. The estimates of rotated loadings are subject to sampling variations. 
The standard errors of the loadings give information with respect to the statistical 
stability for individual solutions. However. they do not give the information as 
to the statistical relationships between different solutions. It is known that the 
normal varimax solution often gives results similar to those by the raw varimax 
method (the "normal" solution indicates the solution with Kaiser's normaliza
tion). From the statistical hypothesis testing. the problem becomes the test of 
the equal corresponding loadings in the two solutions. For the test, joint distri
bution of the corresponding estimated loadings in the two solutions is required. 
Since the two solutions are obtained from the same sample covariance/correlation 
matrices, one solution is not. independent of the other solution. We will derive 
the asymptotic covariances/correlations between the two solutions, which give the 
asymptotic standard deviations for the differences of the corresponding estimated 

parameters in the two solutions. 
  The relationships between factors within a single solution or between differently 

rotated solutions can also be evaluated by factor correlations. If an orthogonal 
model is employed, the correlations between the orthogonal factors within a so
lution are always zero or one, while they are generally correlated with the factors 
in a differently rotated orthogonal solution. The estimates of the factor correla
tions are subject to sampling variations. The asymptotic standard errors of the 
estimates of the correlations will also be derived. 

  When exploratory factor analysis is used in behavioral sciences, manifest vari
ables are usually standardized with unit variances. In this paper, for simplicity 
of model description, the models with unstandardized manifest variables will be 

given first. Then, the models for standardized manifest variables will be intro
duced based on the results for unstandardized variables. A numerical example 
will be presented with typical factor rotations.

2. Two Orthogonally Rotated Solutions 

  In this section, the results for two orthogonally rotated solutions are provided. 

Let x be the p x 1 vector of random manifest variables and be described as:

x=µ+Af + e, (1)

where E (x) = µ (p x 1) ; E (f) = 0 (q x 1) : Var (f) = Iq . where Iq is the 

q x q identity matrix and q is the number of common factors: E (e) = 0 (p x 1) ; 
Var (e) = T (p x p) is a diagonal matrix: Cov (f , e) = 0 (q x p): and A is a, p x q 
factor loading matrix. From the model, we have the covariance matrix for x :

E=AA'+T. (2)

We suppose that the common factors are orthogonally rotated in two different 

methods. That is, the two rotated loading matrices are

B1 = AT1, TTT1 = Iq and B2= AT2, T2T2 = Iq. (3)



From (2) and (3)_ 5: can he described as

E = AT1TjT2TTA' +' = AT1(P12TTA' + T = B14P12B2 +'1', (4)

where '12 = E (Tl f f'T2) = TTT2 is the inter-correlation matrix for the two 
differently rotated sets of factors Ti f and T2 f . Since B2 = AT2 = AT1T1T2 = 
B14D12, 4D12 is a kind of rotation (transformation) matrix and (4) is similar to 
Ogasawara's (1998b.                 (7)) model. The difference is that in (4) two differently 
rotated solutions are considered while B1 in Ogasawara (1998b) is a just identified 
confirmatory loading matrix which is not of direct interest in his model. 

  We are interested in the asymptotic correlations between the estimates B1 and 
B2, and the asymptotic standard errors for the estimates 112. They are obtained 
from the information matrix with appropriate restrictions to identify the model 
of (4). Let 1 be the log Wishart likelihood for B1, B2 and 412. Then,

l =  (n/2) {ln JEJ + tr (_1S) E} + const., (5)

where E = B14)12B2 + 'Y; n = 1~  1; N is the number of observations and 
S is an unbiased sample covariance matrix for manifest variables. Let r = 
r (B1, X12, B2) = 0 be the vector with an appropriate dimension for the restric
tions for the parameters. The restrictions come partly from removing rotational 
indeterminacies and partly from the redundant expression in (4). Let 0 be the 
vector whose elements are the non-fixed parameters in B1, B2, 4P12 and XF. Then, 
the asymptotic covariance matrix for the maximum likelihood estimators of the 

parameters is obtained from the submatrix I* of the inverse of the augmented 
information matrix IA (see e.g., Silvey, 1975):

I_1 _ I Or//00 -1 _ 1* # A O
r/00' 0 # # ' (6)

where I is the information matrix, that is,

(I )ij = I (8i, O) = E (_a2l/aoa) iej = 2 tr E-108 E-1 a8 
                                                                   2 j

(7)

in which (.)i,. denotes the (i, j)th element of the matrix in parentheses; Oi is the 
i-th element of 0; and #'s indicate submatrices which are not used here. The 
asymptotic standard errors of the estimates are the square roots of the diagonal 
elements of I* and the asymptotic correlation matrix for the estimates of the 
parameters B1, b2, X12 and A~ is

acor (9) = (Diagl*)-1/2 1* (Diagl*)-1/2 , (8)

where Diag (.) denotes the diagonal matrix whose diagonal elements are those 
of the parenthesized matrix. By replacing the true values of the parameters in



(6) and (8) by their estimates, we have the estimates of the asymptotic standard 
errors and correlations. 

  The restrictions r = 0 and consequently IA depend on rotation methods em

ployed. However, the formula for the information matrix I, which will be shown in 
Appendix 1 (see (Al)), is common to rotated solutions. The first set of restrictions 
comes from the redundancy of having two orthogonally rotated loading-matrices 
in a single covariance structure. That is, from B1 4D 12= B2 we have

rl = vecRl = vec (B1112  B2) = 0, (9)

where rl is a pq x 1 vector and vec (.) operator vectorizes the parenthesized matrix 
by stacking each column of the matrix sequentially in a single column vector. The 
partial derivatives required in (6) are as follows:

Orlij = 6isY'12tj, Orlij _ -6zs6jt, (2, s = 1, ..., p; j, t, = 1, ..., q) 
ablst Ob2st 
arlij        = 6jvbliu, (i = 1, ..., p; j, u, v = 1, ..., q) , 

0012uv (10)

where rlij = (R1)ij, blst = (B1)st, b2st = (B2)st, 012uv = (")uv and Sis is the 
Kronecker delta. 

  The second set of restrictions corresponds to the redundant parameters (D12 in 

(4), though we are interested in this matrix. Noting that 4)12 is an orthogonal 
matrix, we have

r2 = vechR2 = vech ((D12421  II) = 0 (11)

where r2 is a (q2 + q) /2 x 1 vector; vech (.) denotes the vector consisting of the 
elements on or below the diagonal elements of the matrix in parentheses; and 

X21 = V12. Since the number of the parameters in 4D12 is q2, r2 = 0 is not 
sufficient for removing the redundancy of introducing the matrix (P12 in (4). This 
will be completed by one of the following third and fourth sets of restrictions (or 
the first set of restrictions). The partial. derivatives of r2 with respect to 112 is

 ,~, = 6iuOl2jv + 6ju&l2iv, (q > i > j > 1; u, v = 1, ..., q) ow12uv (12)

where r2ij = (R2)ij. 
  The third and fourth sets of restrictions are concerned with rotational indeter

minacies. Let hl = hl (B1) and h2 = h2 (B2) be analytical rotation criteria to be 
optimized by B1 and B2, respectively. Then, from Archer and Jennrich (1973), 
the third and fourth sets of restrictions are

r3 = vbR3 = vb B1 Ohl  Ohl Bl = 0               a 
l a B'

(13a)

and

r4 = vbR4 = vb B ah2 Oh2 2  , B2 = 0              aB
2 aB2

(13b)



respectively, where r3 and r4 are (q2  q) /2 x 1 vectors and vb (.) denotes the 
vector consisting of the elements below the diagonal elements of the matrix in 

parentheses. The partial derivatives of h1 and h2 with respect to B1 and B2 
depend on the functions h1 and h2 (see the references in the previous section). 
The overall restrictions are. -,limmarizexi as

r = i (r1 , r2, r3, r4) = 0. (14)

Since the number of restrictions for r1. r2, r3 and r4 are pq, (q2 + q) /2, (q2  q) /2 
and (q2  q) /2, respectively, the total number of restrictions becomes

n,. = pq + (3q2  q) /2. (15)

On the other hand, since the numbers of parameters in B1, B2, X12 and ' are pq, 

pq, q2 and p, respectively, the total number of parameters is

nP = 2pq+p+q2. (16)

Consequently, the number of independent parameters is

np-nr =pq+p q 2 _ /2, q) (17)

which is equal to the number of independent parameters in the usual exploratory 
factor analysis model (see (2)).

3. An Orthogonally Rotated Solution and an Obliquely Rotated So

   lution 

  Next, we consider the relationships between an orthogonally rotated solution 

and an obliquely rotated solution. In this section the same notation B2 is used for 

an obliquely rotated loading matrix as that for the orthogonally rotated solution 

to avoid complicated notations. In addition to the parameters in the previous 

section we have to consider the correlations within the second set of obliquely 

rotated factors. Considering all parameters concerned with the two sets of factors, 

the covariance structure can be described as:

E=AT1TTT2T2'A'+T=AT14P12T2'A'+T 
 =B1412B2+4'=B1412~'22~21412B2+4' (18)

with Diag4P22 = Iq where T1 is the same as in (4); T2 is the rotation matrix 
with Diag (T2T2) = Iq: and 4)22 = T2T2 is the correlation matrix for the second 
set of oblique factors with unit variances. Let 0 be the vector consisting of the 

non-duplicated non-fixed parameters in B1. B2, ~P12. 22 and T. Then, the log 

Wishart likelihood and the augmented information matrix are obtained with E =



B1'P1A22'D21412B2 + T similarly to the case of two orthogonal solutions (see (5) 
and (6)). The information matrix will be given in Appendix 1 (see (A2)). 
  The restrictions for model identification are obtained in the following way. 

Noting that B1412 = B2'22, the first set of restrictions is

rl = vecR1 = vec (B1c12  B2422) = 0, (19)

where rl is a pq x 1 vector. The partial derivatives with respect to the parameters 

are

 Orlij = 6isOl2tj, 49rlij _ -6is022tj, (2, s = 1, ..., p; j, t = 1, ..., q) , 
 ablst 8b2st 

arlij = 6jvbliu, (i p; j, u, v = 1, ..., q) , 
UY12uv 
arlZ3 =-bwb2iu  b3ub2iv, (2=1 , ..-,p,j =1, ...,q,q > u >v>1 

ag22uv

(20)

where 022uv = ((D22)uv. 
  The second set of restrictions are concerned with 4D12 and (D22. Note that (P12 

is no longer a transformation matrix from a loading matrix to a different loading 
matrix. However, from (19) we see that 112 is a transformation matrix from the 
loading matrix B1 to the structure matrix of the second set of factors B2c22. 
Since 4D12 = TTT2 and 4D22= T2T2, we have

r2 = vechR2 = vech ((D12"D22 X21  Iq) = 0, (21)

where r2 is a (q2 + q) /2 x 1 vector. The partial derivatives of r2 with respect to 
the parameters are

ar2ij = 6iu (~12~22) . + 6ju 0124)-1). 22, (q > i > j > 1; 2l, v = 1, ..., q) 0012uv w v 

 ar ~ _ _   2a  (~12~22 (Iuv + Ivu) ~22~21 
0Y~22uv ii 

    _  (D -1),u iu (~l2~22) j2,  (l2') ~~22 iv ( ~12~22 )ju , 
      (q>i>j>l;q>u>v>1).

(22)

The third set of restriction is the same as (13a):

          ah1 _ ahl r3 = vb BI OB
I aBl Bl = 0,

(23)

where r3 is a (q2  q) /2 x 1 vector and depends on the forms of hl. The fourth 
set of restrictions are concerned with the rotational indeterminacy for B2 and is 

described as:
            ~ 8h2 -1 __ r4 = v0 B2 5

B2 X22 0, (24)



(see, Jennrich, 1973a), where vo (.) vectorizes all off-diagonal elements of the 
parenthesized matrix and hence r4 is a (q2  q) x 1 vector. For the actual deriva
tives of (24) with respect to the associated parameters, see the references in the 
introductory section. 

  The number of the overall restrictions r = (r' , r2, r3, r'4)' = 0 is

nr = pq + (q2 + q) /2 + (q2  q) /2 + (q2  q) = pq + 2q2  q, (25)
while the total number of parameters in B1, B2, 4D12, 4D22 and T is

np = pq + pq + q2 + (q2  q) /2 + p = 2pq + p + (3q2  q) /2 (26)

Consequently, we see that the number of independent parameters np  nr = 

pq + p  (q2  q) /2 is unchanged.

4. Two Obliquely Rotated Solutions 

  In this section, the results for two obliquely rotated solutions are provided. 

The additional parameters other than those in the previous section are the non

duplicated off-diagonal elements of 411, the correlation matrix between the oblique 

factors in the first solution. Let Ti and T2 be the rotation matrices with Diag (TTTi) _ 
Diag (T2T2) = Iq. Then, the covariance matrix of the manifest variables is de
scribed as:

E = ATl-1TTT2T2'A'+T = AT,-'4D 12TH'A'+T 
 = B14~12B2 + q' = B14)124D22 4)2111 ~P12B2 + T (27)

with T1Ti = X11, Diag-(Dil = Iq, T2T2 = (D22 and Diag4D22 = Iq, where the same 
notation B1 as in the previous sections is used for the oblique solution in this 
section. The information matrix for the non-duplicated non-fixed parameters in 
B1, B2, '12, 'P11, X22 and will be given in Appendix 1 (see (A3)). 
  The restrictions are obtained as follows. The first set of restrictions is

r1 = vecR1 = vec (B1112  B2122) = 0, (28)

where r1 is a pq x 1 vector and equal to (19) in form. The partial derivatives 
with respect to the parameters are the same as (20). Noting that Iii = T1T1 and 
122 = T2T2, the second set of restrictions is

r2 = vechR2 = vech (~11  4D124D22 X21) = 0, (29)
where r2 is a. (q2 + q) /2 x 1 vector. The partial derivatives of r2 with respect to 
the associated parameters are

1  r2i _-S -6 ~-1). (q>i> j>1;n v=1 q)  ,~ iu ( 12 22 ju ( 12 , , 
aye 12 uv j v v



C7r2ij 
      = Siusjv, 

0011uv 
Br .L 

a 2.j = ~,~,22uv (12') -(121 4~4)-+ (4'1241-'),v ("11124D_1) j 
          4D22 22 22 22             )jv 

u 

      (q>i>j>1;q>u>v>1),

(30)

where O11uv = ('ii)uv. The third and fourth sets of restrictions are similar to 

(23):

r3=vo B1 11 =0andr4=vo (B' X22 =0, 
        OBI O B2

(31)

where h1 = hl (B1) in this section is an oblique rotation criterion to be optimized 
by B1. The dimensions of r3 and r4 are each q2  q. 
  The number of the overall restrictions r = (r1, r2, r/, r')' = 0 is

nr=pq+(q2+q)/2+q2-q+q2-q=pq+(5g2-3q)/2,(32)

while the total number of the parameters in B1, B2, 4P12, 411, '22 and I is

np=pq+pq+q2+ (q2-q)/2+ (q2-q)/2+p 
  = 2pq+p+2q2 -q (33)

which gives the unchanged number of the independent parameters np  nr = 

pq+p (q2-q)/2.

5. Models for Standardized Manifest Variables 

  The models for standardized manifest variables for orthogonal and/or oblique 
factors can be obtained by replacing E in (4), (18) and (27) with the population 
correlation matrix P for manifest variables. Let D = diag (d1, ..., dp) be the di
agonal matrix with the i-th diagonal element di, (i = 1, ..., p) being the standard 
deviation of the i-th unstandardized manifest variable. Then,

E = DPD (34)

and the covariance matrices for standardized manifest variables corresponding to 

(4), (18) and (27) are
E = D (B14D12B2 + T) D, (35a)

E = D (B1'D12~22 '21~12B2 + ) D, (35b)
E = D (B14D12~22(D21~1114D12B2 + ) D (35c)

with DiagP = Ip and Diag4b11 = Diag 122 = Iq 

  The information matrices for the models of (35) will be given in Appendix 
1 (see (A4)). All of the restrictions described in the previous sections should be



imposed on the corresponding parameters in (35). Since P is a correlation matrix, 
we have p additional restrictions for each of the models of (35). That is,

r5 = (DiagP) 1p  1p = {Diag (B1(D12B2 +') } 1p  lp = 0, (36)

where r5 is a px 1 vector and 1p is the px 1 vector consisting of ones. Note that (36) 
holds not only for (35a) but also for (35b) and (35c). For (35b) the restrictions 

     4D21 = Iq have already been imposed by (21) and the restrictions can 4D124)22 

be substituted for (35b), which yields (36). Similarly, for (35c), the restrictions 
4D11 = 112 '22 ()21 (see (29)) can be substituted for (35c), which gives (36). The 
common partial derivatives of r5 with respect to the parameters are

 apii = bis (BA21)it Opii = his (B14D12)it, (i, s = 1, ---,P; t = 1, ..., q) , 
 ablst ab2st 

 OPii = bliub2iv, (i = 1, ..., p; u, v = 1, ..., q) , 00
12uv 
 apii 
  a o= his, (i, S = 1, ..., p) , 

s

(37)

where pii = (P)ii and Os = (`I')ss. The number of the additional restrictions in 

(36) for each model for standardized variables is p, while the additional parameters 
are d1, ..., dp whose number is p. Hence, the independent numbers of parameters 

are unchanged by standardization of manifest variables.

6. A Numerical Example 

  A numerical example based on the correlation matrix for eight physical vari
ables (N=305; Harman, 1976, p.22) will be presented. Table 1 shows six rotated 
solutions with the assumption of a two-factor model: the principal factor solution, 
the raw and normal-varimax solutions, the raw and normal-direct quartimin so
lutions, and the normal oblique varimax solution (Crawford, 1975; Browne & 
DuToit, 1992). The principal factor solution (BB : diagonal) is a kind of max
imum likelihood solution, which is obtained from the spectral decomposition of 
AA'. 
  Table 2 gives the theoretical estimates of the asymptotic correlations between 
the estimated loadings for Factors I of the principal factor and normal varimax so
lutions for standardized variables. Table 2 also shows the corresponding simulated 
values, which have been obtained in the following way. First, the fitted correlation 
matrix by the two-factor model was regarded as a population variance-covariance 
matrix. Based on the population covariance matrix, random observations of the 
sample size equal to the real one (N=305) were generated under the assumption of 
multivariate normality. From the generated data, the parameters were estimated 
with factor rotation. For a rotated solution. we still have the indeterminacy of 
the signs and permutations in the columns of a rotated loading matrix, which has



been removed by selecting the solution which is closest to the population loadings. 

The estimation was repeated 1,000 times and we had 1,000 estimates for each pa

rameter. The simulated correlations are the correlations computed from these 

values. The simulated values in Table 2 are close to the corresponding theoretical 

values.

Table 1: Estimated loadings for the eight physical variables

  Table 3 shows the theoretical asymptotic correlations for the five combinations 

(A-E) of orthogonal and/or oblique solutions. The values are for the correspond
ing parameters for two solutions. That is, for the combination A, the values for 
Factors I for standardized variables are the diagonal elements of the theoreti
cal asymptotic correlation matrix in Table 2. The value acor (&l1 21, ~22 21) in 
Table 3 is the estimate of the asymptotic correlation between (11)21 -~_ X11 21 
and (th2)21 = ~22 21. The results in Table 3 include those for unstandardized 
variables, which have been obtained by regarding the sample correlation matrix 
as a sample variance-covariance matrix. From the table we see that when two 
solutions are rather different (e.g., A), the absolute values of the correlations be
tween them tend to be small and the correlations can be negative. In contrast, 
the correlations become very high when two solutions are similar (B, D and E).



Table 2: Correlations between the estimated loadings 
for the eight physical variables (standardized variables)

The correlations between the orthogonal and oblique solutions are moderate or 

high in this case (C). The value (.99) of acor (~V11 217 q22 21) for the combination 
E is common to the cases of unstandardized and standardized variables, which 
comes from the property of normal solutions described in Appendix 2. 

  Table 4 gives the results of the tests of the equalities between two corresponding 
factor loadings (factor correlations). These are based on the asymptotic normality 
of the maximum likelihood estimators. The z-scores are obtained from, e.g.,

                           b12j  b22j 
z2j 

                           }1/2    {ae s()2 blij+ ase (2ij)2 b 2ase (1ij) base (2ij) bacor (blij , b2ij 

)

(38)

which is asymptotically distributed according to the standardized normal distri

bution when b1ij = b2ij. The chi-squares in Table 4 are obtained in the following 

way. Let b1(i) and b2(i) be the i-th columns of B1 and B2, respectively. Then, it 

can be shown that

X2 = (bl() i b2(i)), S acov (bl() i b2(i)) }-1 (1(i) b b2(i)) (39)



is asymptotically chi-square distributed with df = p, when bl(i) = b2(i). The 
matrix acov(•) in (39) is the estimate of

acov (hl() i b2(i)) = acov (hi()) i+ acov (h2(j)) 
              -acov (1(i), bb2(i))  acov (b2(), ib1(j)) , 

      (i = 11-1q)

(40)

where acov (bl(), ib2(i)) is a px p asymptotic covariance matrix of b, (j) with respect 
to b2(i) 

  In Table 4, we find that the normal and raw solutions by the same rotation 
methods (B, D) do not show significant differences except for the case of the 
standardized variables for B. This corresponds to the similarities of the raw and 
normal solutions shown in Table 1. Notice that the normal oblique varimax and 
the normal/raw quartimin solutions in Table 1 are similar in a practical sense 
with slight advantage in terms of a simple structure for the quartimin solutions 
over the normal oblique varimax solution, while the statistical test for E shows 
significant differences. This means that the difference is small but it is statistically 
stable. The difference between the factor correlations (.473 vs. .36) may not be 
small even in the practical sense, while z= -11.2 for this difference. (The value of 
z= -11.2 for ~ 11 21 -'p22 21 in E is common to the cases of unstandardized and 
standardized variables, which comes from the results shown in Appendix 2.) 

  In Table 4, we see that the absolute values of z and chi-squares for the cases 
of standardized variables tend to be greater than the corresponding values for 
the cases of unstandardized variables. These tendencies are associated with the 
relatively small standard errors of parameter estimates for standardized variables 

(not shown here), which gives larger absolute values of z (see (38)) on condition 
that the variances of unstandardized variables are set at unities for comparison 
and that the asymptotic correlations between parameter estimates concerned are 
on the same level. 

  Table 5 shows the estimates of the correlations between two sets of rotated 
factors with their corresponding standard errors. The simulated values in Table 
5 have been obtained from the standard deviations of the 1,000 estimates of each 

parameter in the simulation mentioned earlier. The theoretical standard errors are 
close to their corresponding simulated values except for the cases with very small 
values (e.g., .000003). Since the results for the two sets of normal solutions (C and 
E) for unstandardized variables are equivalent to those for standardized variables, 
only one of the two sets are shown. This is a general result and will be explained 

in Appendix 2. The values of the correlations between the corresponding factors 

(the diagonal elements of X12) for similar solutions are very high (B, D and E) 
and are accompanied by small standard errors. The absolute values of correlations 
must be less than or equal to one. Hence, the confidence interval for a correlation 

(4P12)ij . may violate this restriction. For this case, a variable transformation such



as Fisher's z-transformation can be used (see Browne, 1982). For the results of 
Table 5, the transformation does not seem to be needed. The standard errors in 
Table 5 are rather small (< .05).

Table 3: Asymptotic correlations between the estimated loadings 

   and factor correlations for the eight physical variables

7. Discussion 

  Since the covariance structure models for manifest variables in our methods 
include two rotated solutions, the sizes of the information matrices tend to be 
large. The size of an augmented information matrix is nr + np. The largest 
one is for the model for two oblique solutions for standardized variables. Noting 
that additional p parameters and p restrictions are needed for the models for 
standardized variables, the size becomes (see (32) and (33))

nr + np = {pq + (5q2  3q) /2} + (2pq+p+ 2q2  q) + 2p 
     = 3pq + 3p + (9q2  5q) /2. (41)



Table 4: Tests of the equalities of the correspondeing loadings 

    and factor correlations for eight physical variables



Table 5: Correlation between factors for the eight physical variables

When e.g., p = 20 and q = 5, (41) is 460. We have to take the inverse of the 
augmented matrix, though only once, and the method of taking the inverse of a 
matrix is an algebraic one without iterative approximation. Since usually only 
the submatrix I* in IA 1 is of interest, it is possible, if necessary, to reduce the 

problem size substantially by using the formula for the inverse of a partitioned 
matrix when I is singular:

                             ' 1* = J-1  J-1H (H1J_1H)1HJ_1, (42)

where J = I + HH' and H = Or'/00 (see Silvey, 1975, p.178 and Browne, 1982, 

p.93; see Rao, 1973, 4i.1-2 for associated topics). 
  In the previous section for a numerical example, the chi-square tests were 

carried out separately for each pair of corresponding factors because each factor 
was a natural unit for testing the equalities of solutions. The comparison units 
can be changed if necessary. For instance, overall comparison between B1 and 
b2 may also be of interest. However, we should note that acov (vec (B1)) and 
acov (vec (B2)) are singular when B1 and B2 are solutions in exploratory fac
tor analysis. Among the elements of B1 and B2, at most pq  (q2  q) /2 and



pq  (q2  q) elements give non-singular acovs for orthogonal and oblique factor 
models, respectively. 

  An additional application of the asymptotic covariances/correlations between 
B1 and B2 is the construction of the confidence intervals for functions of B1 and 
B2 (and estimated factor correlations) by using the asymptotic standard errors of 
the functions. For instance, Tucker's factor congruence coefficient, i.e.,

   b1(j) b2(z) 
                      (i = 1, ..., q) 

bl(i)bl(j)1 b2(i)b2(i)
(43)

is one of the functions used in practice. The asymptotic standard error for (43) 
can be easily obtained by using the delta, method. Ogasawara (1999b) derived the 
asymptotic standard error for (43) in the case when B1 and B2 are independent. 
However, since they are not independent in our case, the acovs between B1 and 
B2 should be considered. Tucker's coefficient for overall factor congruence can 
also be defined by using vec (B1) and vec (B2). The asymptotic standard error 
for the overall congruence coefficient can be similarly obtained (the singularities 
for acov (vec (B1)) and acov (vec (B2)) are irrelevant for this case).
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Appendix 1. Information Matrices 

1. Models for Unstandardized Manifest Variables 

  To obtain the (i, j)th element of an information matrix (see (7)), we need 
OE/00j and 8E/80j. Some of the elements of information matrices may become 
simple by expanding the trace term. However, the expressions without expanding 
the trace are sufficient for exact computation. 

  In the following the lowercases denote the elements of the matrices denoted by 
the corresponding uppercases. The locations of the elements are denoted by the 
subscripts. 

1) Two Sets of Orthogonally Rotated Solutions (see (4))

OE OE       I
st412B2, = B14)12Its, ab

lst ab2st 
 aE aE 

a = BiIuvB'2, ads = Iss,  012uv 

(s = 1,...,p;t,u,V = 1, ..., q)

(Al)

where Ist is the matrix of an appropriate size whose (s, t)th element is one and 
others are zero.

2) An Orthogonally Rotated Solution and an Obliquely Rotated Solution (see 

(18))

  8E OE = BID 12Its, s = 1          Ist~12B2, ( , .., p; t = 1, ..., q) ~ 
 ablst  (9b2st 

 aE 
 ,~, = B1 (2I + ~12~2i Ivu~12~ B2, (u, v = 1, ..., q) ~W 12uv



      = -B1~124 2 (Iuv + Ivu) 4)22'D21'D12B2 
a022uv 

        B1'D12'D22 (I + Ivu) B2, (q u > v > 1) , 
 OE 

  as= Iss, (s = 1, ...,p) 

s

(A2)

3) Two Sets of Obliquely Rotated Solutions (see (27))

 OE = 
 Obi st Ist412B2, abOE = 2st BiI12Its, (s = 1,...,p t = 1, ..., q) 

 OE _       = B1 (2Iuv + 4'124)22 Ivu'D111~12) B2, (u,'v = 1, ..., q) , 0012uv 
 a> 

 ,~ = -B14D12422 (D21'11 (Iuv + Ivu) 4111~12B2 ail' l l uv 
      = -B1 (Iuv + Ivu) (b111~12B , (q > 2G > v > 1) 

     = -B1~12"D22 (Iuv + Ivu) B2, (q > u > v > 1) , 
a()22uv 

  C > 
  8 = Is, (s = 1, .., p) . 

S

(A3)

2. Models for Standardized Manifest Variables (see (34) )

   = IiiPD + DPI ti, (i = 11-1p) , ad
i 

OE _ DaPD , ae
i aei

(A4)

where Oi denote the parameters except dl, ..., dp in (35). From (35), we see that 

the forms of OP are equivalent to (A1),          ae
i (A2) and (A3), though their values are 

different unless D = Ip.

Appendix 2. Properties of Transformation Matrices When Kaiser's 
Normalization is Employed 

  Let a p x q factor loading matrix A = (Aij) be rotated to B by a rotation 
method with Kaiser's normalization. Let H be the diagonal matrix with the i-th 
diagonal element being the square root of the communality of the i-th manifest 

q 
variable (i.e., (H)ii = (~ A )1/2 ). A rotation method with Kaiser's normal

                         j=1 
ization transforms the rows of A such that A* = H-'A. Then, A* is rotated 

to B* = A*T by a transformation matrix T. The rotated loading matrix B* is



denormalized as B = HB* = HA*T = HH-lAT = AT. From this equation we 
find that T is also a transformation matrix from A to B, though it is determined 
by A* not by A. Then, we have the following proposition. 

  Proposition. Let T be a transformation matrix from an unrotated loading 
matrix A to a rotated loading matrix B by a rotation method with Kaiser's 
normalization, where A is a maximum likelihood estimate in an exploratory factor 
analysis model and the rotated factors are orthogonal or oblique. Then, t is 
independent of the scales of manifest variables. 

  Proof. Let be a row-normalized unrotated factor-loading matrix 

corresponding to the unrotated loading matrix A = (Aij). Suppose that the 
standard deviation of the i-th manifest variable is multiplied by an arbitrary 

positive number k. Then, from the scale freeness of the maximum likelihood 

solution for an exploratory factor analysis model, we have Aij = k1ij, where k is 

the estimate of k and a parameter with tilde denotes the estimate after the scale 

transformation. Since aij = kAij/{~ (kajj 2()}1/2 = ~ij/{~ ~ij 2}1/2 = ~ij, 
                                    j=1 j=1 

we have A* = A*. By applying this result to other manifest variables, we see that 
A* (= A*) is independent of the scales of the p manifest variables. From this and 
the fact that t is determined by A*, the result of the proposition follows. El 

  Using the proposition we have the following corollary. 

  Corollary. Let X12, (i11 and I22 be the maximum likelihood estimates of the 
parameters in the previous sections. Suppose that they are obtained by rotation 
methods with Kaiser's normalization. Then, the covariances of the estimates of 
the parameters in 4D12, 1'11 and 4D22 are independent of the scales of manifest 
variables. 

  Proof. Let T1 and t2 be the estimates of the transformation matrices with 
Kaiser's normalization. From the result of the above proposition T1 and T2 are 
independent of the scales of the manifest variables. Since (i12 = TTT2, X11 = 
TTT1 and 422 = T2T2, these matrices and consequently their covariances are 
independent of the scales of the manifest variables. 0 

  The result of the corollary suggests a nice property of Kaiser's normalization.


