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ASYMPTOTIC CORRELATIONS BETWEEN ROTATED
SOLUTIONS IN FACTOR ANALYSIS

Haruhiko Ogasawara*-!

The asymptotic correlations between differently rotated solutions in ex-
ploratory factor analysis are derived. The solutions are orthogonally or obliquely
rotated for unstandardized or standardized manifest variables. To obtain the
asymptotic correlations between different solutions, the covariance models for
manifest variables have been constructed so that two sets of solutions are in-
volved in a single covariance structure. The asymptotic correlations can be used
for the statistical test of the differences of rotated solutions. The correlation
matrix between the rotated factors of the first solution and those of the second
is also introduced in the models with appropriate restrictions to identify the
models. The asymptotic standard errors of the estimates of the correlations be-
tween the factors in different solutions are simultaneously provided. A numerical
example is presented with simulated values.

1. Introduction

Factor analysis is one of the most frequently used methods of multivariate
data analysis in behavioral and social sciences. While confirmatory factor anal-
ysis models as special cases of covariance structure models have been developed
and well investigated in recent years. the statistical analyses for the results of ex-
ploratory factor analysis especially those with factor rotation have not sufficiently
been provided in spite of the huge amount of its usage in practice.

The formulas for the asymptotic standard errors of rotated factor loadings
have been developed by Archer and Jennrich (1973) (see also Jennrich, 1974)
and Jennrich (1973a) for orthogonal and oblique models, respectively. The actual
results required to apply the above formulas to individual rotation methods have
been given, for example, by Archer and Jennrich (1973) for the raw orthomax
method, Jennrich (1973a) for the raw-oblimin method, Ogasawara (1996; see also
1998a) for the orthomax method with Kaiser’s normalization, Ogasawara (1998b)
for the promax solution and Ogasawara (1999a) for the direct oblimin method with
Kaiser’s normalization. Methods using numerical derivatives for the asymptotic
standard errors have been given by Browne and DuToit (1992) (see also Cudeck
& O'Dell, 1994). For the standard errors of rotated loadings, Jennrich (1973b)
showed statistically stable or unstable results caused by factor rotation, and called
them the Wexler and anti-Wexler phenomena, respectively.

The purpose of this paper is to derive the asymptotic correlations among dif-
ferently rotated solutions in factor analysis under the assumption of multivariate
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normality. The estimates of rotated loadings are subject to sampling variations.
The standard errors of the loadings give information with respect to the statistical
stability for individual solutions. However. they do not give the information as
to the statistical relationships between different solutions. It is known that the
normal varimax solution often gives results similar to those by the raw varimax
method (the “normal” solution indicates the solution with Kaiser’s normaliza-
tion). From the statistical hypothesis testing. the problem becomes the test of
the equal corresponding loadings in the two solutions. For the test. joint distri-
bution of the corresponding estimated loadings in the two solutions is required.
Since the two solutions are obtained from the same sample covariance/correlation
matrices, one solution is not independent of the other solution. We will derive
the asymptotic covariances/correlations between the two solutions, which give the
asymptotic standard deviations for the differences of the corresponding estimated
parameters in the two solutions.

The relationships between factors within a single solution or between differently
rotated solutions can also be evaluated by factor correlations. If an orthogonal
model is employed, the correlations between the orthogonal factors within a so-
lution are always zero or one, while they are generally correlated with the factors
in a differently rotated orthogonal solution. The estimates of the factor correla-
tions are subject to sampling variations. The asvmptotic standard errors of the
estimates of the correlations will also be derived.

When exploratory factor analysis is used in behavioral sciences, manifest vari-
ables are usually standardized with unit variances. In this paper, for simplicity
of model description. the models with unstandardized manifest variables will be
given first. Then, the models for standardized manifest variables will be intro-
duced based on the results for unstandardized variables. A numerical example
will be presented with typical factor rotations.

2. Two Orthogonally Rotated Solutions

In this section, the results for two orthogonally rotated solutions are provided.
Let & be the p x 1 vector of random manifest variables and be described as:

z=p+Af+e, (1)

where E(z) = p(px 1) : E(f) = 0(gx1): Var(f) = I, . where I; is the
g X g identity matrix and ¢ is the number of common factors: E(e) =0(p x 1) ;
Var (e) = ¥ (p x p) is a diagonal matrix: Cov (f,e) = O(gxp):and Aisapx g
factor loading matrix. From the model, we have the covariance matrix for o :

T = AN - 0. (2)

We suppose that the common factors are orthogonally rotated in two different
methods. That is, the two rotated loading matrices are

By = ATy, T\T, = I, and By = ATy, T3T) = I,. (3)
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From (2) and (3), £ can be described as
Y = AT\TIThT4N + ¥ = ATy ®12T)A + ¥ = B1®13B, + P, (4)

where ®19 = E (I{ff'T2) = T{Ty is the inter-correlation matrix for the two
differently rotated sets of factors T f and T3f. Since By = ATy = ATZYT|Th =
B1®12, @12 is a kind of rotation (transformation) matrix and (4) is similar to
Ogasawara’s (1998b, (7)) model. The difference is that in (4) two differently
rotated solutions are considered while B; in Ogasawara (1998b) is a just identified
confirmatory loading matrix which is not of direct interest in his model.

We are interested in the asymptotic correlations between the estimates B; and
By, and the asymptotic standard errors for the estimates $15. They are obtained
from the information matrix with appropriate restrictions to identify the model
of (4). Let [ be the log Wishart likelihood for By, By and ®15. Then,

= —(n/2){ln|2|+tr (E_IS)} + const., (5)

where ¥ = Bl<I>12B§ +W¥: n = N —1; N is the number of observations and
S is an unbiased sample covariance matrix for manifest variables. Let r» =
T (B1, P19, B2) = 0 be the vector with an appropriate dimension for the restric-
tions for the parameters. The restrictions come partly from removing rotational
indeterminacies and partly from the redundant expression in (4). Let € be the
vector whose elements are the non-fixed parameters in By, Bs, ®15 and ¥. Then,
the asymptotic covariance matrix for the maximum likelihood estimators of the
parameters is obtained from the submatrix [* of the inverse of the augmented
information matrix I4 (see e.g., Silvey, 1975):

-1
IR R R 7T R I Ca
Ia = [37'/89' 0 } - { # # ] ©)

where [ is the information matrix, that is,

(I);; = 1(6,,6;) = E (~01/06:06;) = gtr (z—lg—zz-lg—;) , (7)
in which (-);; denotes the (%, j)th element of the matrix in parentheses; 6; is the
i-th element of @; and #'s indicate submatrices which are not used here. The
asymptotic standard errors of the estimates are the square roots of the diagonal
elements of I* and the asymptotic correlation matrix for the estimates of the
parameters Bl, ]3’2, ‘iﬁg and ¥ is

acor (é) = (DiagI*) V2 I* (DiagI*)~Y/2, (8)

where Diag (-) denotes the diagonal matrix whose diagonal elements are those
of the parenthesized matrix. By replacing the true values of the parameters in
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(6) and (8) by their estimates, we have the estimates of the asymptotic standard
errors and correlations.

The restrictions = 0 and consequently I4 depend on rotation methods em-
ployed. However, the formula for the information matrix f, which will be shown in
Appendix 1 (see (Al)), is common to rotated solutions. The first set of restrictions
comes from the redundancy of having two orthogonally rotated loading-matrices
in a single covariance structure. That is, from B1%®;9 = By we have

1 = vecR; = vec (BP9 — By) =0, (9)

where 7 is a pg x 1 vector and vec (-) operator vectorizes the parenthesized matrix
by stacking each column of the matrix sequentially in a single column vector. The
partial derivatives required in (6) are as follows:

ry4; Or1:; ) .
=& o = =805, (i,s=1,..,p;j,t,=1,...
6b15t ls¢12tj7 8b25t wsUjt, (l’7‘5 PSRy 229 PR ? aq):
Oriy; , :
14 = 6_7‘1)(71-,;”, (Z - 1, ], U U= 13 '“aQ)y (10)
a¢12uv

where 71;; = (Rl)ij’ bist = (Bi)gy, bost = (Ba2)gy, 912u0 = (®),, and d; is the
Kronecker delta.

The second set of restrictions corresponds to the redundant parameters ®,5 in
(4), though we are interested in this matrix. Noting that ®;5 is an orthogonal
matrix, we have

r9 = vechRy = vech ($12®21 — ;) = 0 (11)

where 72 is a (¢° +q) /2 x 1 vector; vech (-) denotes the vector cousisting of the
elements on or below the diagonal elements of the matrix in parentheses: and
&y = ®),. Since the number of the parameters in ®15 is ¢%, 7o = 0 is not
sufficient for removing the redundancy of introducing the matrix ®19 in (4). This
will be completed by one of the following third and fourth sets of restrictions (or
the first set of restrictions). The partial derivatives of ro with respect to @45 is -

Orayj
6¢’1‘2uv

where T245 = (Ry)ij.

The third and fourth sets of restrictions are concerned with rotational indeter-
minacies. Let hy = hy (B1) and hy = hy (B2) be analytical rotation criteria to be
optimized by B; and B, respectively. Then, from Archer and Jennrich (1973),
the third and fourth sets of restrictions are

= diud12ju + judi2iv, (¢ = 1 2§ 2> Liu,v=1,...,q) (12)

8’11 Bhl .
r3 = VbRg =vb (B{ﬁ - -E)T% 1) =0 (lda)
and ohy Ok
__ o t 2 _ 2 _
Ty = VbR4 =vb (BZ—__aBQ —aBé BQ) 0 (13b)
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respectively, where r3 and 74 are (¢2 — ¢) /2 x 1 vectors and vb(-) denotes the
vector consisting of the elements below the diagonal elements of the matrix in
parentheses. The partial derivatives of hy and hy with respect to By and Bj
depend on the functions h; and hy (see the references in the previous section).
The overall restrictions are summarized as

r= (r'l,r’g,ré,ril)lzﬂ. (14)

Since the number of restrictions for 71, r2. 3 and r4 are pg, (¢° + q) /2, (¢° — q) /2
and (g? — g) /2, respectively, the total number of restrictions becomes

ne = pg+ (3¢° ~q) /2. (15)

On the other hand, since the numbers of parameters in By, Bs, ®12 and ¥ are pgq,
pq, ¢ and p, respectively, the total number of parameters is

np = 2pq+p+q2. (16)

Consequently, the number of independent parameters is

np—nr=pq+p—(q2—q)/2, (17)

which is equal to the number of independent parameters in the usual exploratory
factor analysis model (see (2)).

3. An Orthogonally Rotated Solution and an Obliquely Rotated So-
lution

Next, we consider the relationships between an orthogonally rotated solution
and an obliquely rotated solution. In this section the same notation B is used for
an obliquely rotated loading matrix as that for the orthogonally rotated sclution
to avoid complicated notations. In addition to the parameters in the previous
section we have to consider the correlations within the second set of obliquely
rotated factors. Considering all parameters concerned with the two sets of factors,
the covariance structure can be described as:

Y= ATVT{TTy "N + 0 = ATy 0T, A + 0
= B1®13B, + ¥ = B1®13$,, $91 0198, + T (18)

with Diag®sy; = I, where 73 is the same as in (4): T is the rotation matrix
with Diag (T47T:) = I,; and ®9 = T37; is the correlation matrix for the second
set. of oblique factors with unit variances. Let 8 be the vector consisting of the
non-duplicated non-fixed parameters in By. Ba, ®19.®29 and ¥. Then, the log
Wishart likelihood and the augmented information matrix are obtained with ¥ =
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B ® %5, &9, ®)5B5 + U similarly to the case of two orthogonal solutions (see (5)
and (6)). The information matrix will be given in Appendix 1 (see (A2)).

The restrictions for model identification are obtained in the following way.
Noting that B1®y = By®ay. the first set of restrictions is

71 = vecR| = vec (B1®12 — BaP22) =0, (19)

where 71 is a pg x 1 vector. The partial derivatives with respect to the parameters
are

Ory; Ory; .
=4 = e, (s =1, ., pid,t=1,..,4q),
Ob1ar 7,S(b12tj Obar s@22t5 (74 Pl Q)
oryi5 . ,
Y :6jubliu,(l: 17--'ap;],u1v: la-"9q)3 (20)
0¢’12m)
Or1ij

= —8pboin — Ojubzie, (=1, = 1,..,qsg > u>0v > 1),
6¢22uv

where 2900 = (P22),,

The second set of restrictions are concerned with ®,5 and ®99. Note that $;9
is no longer a transformation matrix from a loading matrix to a different loading
matrix. However, from (19) we see that ®1, is a transformation matrix from the
loading matrix Bj to the structure matrix of the second set of factors Be®os.
Since &30 = T{T» and P99 = T3 75, we have

ry = vechRy = vech ($1597} a1 — I;) =0, (21)

where 75 is a (q2 + q) /2 x 1 vector. The partial derivatives of 7 with respect to
the parameters are

Oraij L

00125 S (@12(}22 )j + Ou (¢1Q¢>22 ) Ag=izj>liu,v=1,..,q),
6T2ij .

Ob2ouw (@12@ (T + fo) @25 @21) ij (22)

- ((I)IQ(I)EQl)m (‘1)12‘1)2_2 )jv B (q)lz@;?l)m ((Dm@EQl)ju ’
(gzi>j>lg>u>v>1).

The third set of restriction is the same as (13a):

(23)

rgzvb(B'dhl Ok 1):0

0B, 0B,

where 73 is a (g% — q) /2 x 1 vector and depends on the forms of h;. The fourth
set of restrictions are concerned with the rotational indeterminacy for B2 and is
described as:

4= VO (BQ g]]-;g i ) =0, (24)
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(see, Jennrich, 1973a), where vo(-) vectorizes all off-diagonal elements of the
parenthesized matrix and hence r4 is a (q2 — g) x 1 vector. For the actual deriva-
tives of (24) with respect to the associated parameters, see the references in the
introductory section.

The number of the overall restrictions » = (v, 74, v}, 7}) = 0 is

n=pq+ (¢ +q)/2+ (¢ —q) /2+ (a*-q) =pa+2¢" -q,  (25)
while the total number of parameters in B, Ba, ®13, $92 and ¥ is

np=pg+pg+a’+ (¢ —q)/2+p=2pq+p+ (3 —q)/2  (26)

Consequently, we see that the number of independent parameters n, — n, =
pg+p— (q2 — q) /2 is unchanged.

4. Two Obliquely Rotated Solutions

In this section, the results for two obliquely rotated solutions are provided.
The additional parameters other than those in the previous section are the non-
duplicated off-diagonal elements of @, the correlation matrix between the oblique
factors in the first solution. Let T; and T> be the rotation matrices with Diag (T{T1) =
Diag (T57%) = I;. Then, the covariance matrix of the manifest variables is de-
scribed as:

L= AT I T N + 0 = AT M0 T A + 0
= B1®19B) + ¥ = B103®5, &1 B &19B) + ¥ (27)

with T1Th = @11, Diag®11 = I, T5Th = $2p and Diag®yy = I, where the same
notation Bj as in the previous sections is used for the oblique solution in this
section. The information matrix for the non-duplicated non-fixed parameters in
B, By, ®12, ®11, P22 and ¥ will be given in Appendix 1 (see (A3)).

The restrictions are obtained as follows. The first set of restrictions is
T = vecR1 = vec (Bl‘i’lg — BQ‘I’QQ) = 0, (28)

where 71 is a pg X 1 vector and equal to (19) in form. The partial derivatives
with respect to the parameters are the same as (20). Noting that ®;; = 7|7} and
$og = T5Th, the second set of restrictions is

9 = vechRy = vech (@11 - <I>12<I>521<I>21) =0, (29)

where 77 is a (q2 + q) /2 x 1 vector. The partial derivatives of ra with respect to
the associated parameters are

————arw -1 -1 C o
= —0u (P -4 >i>j>lLuv=1,..
8d)12m; * ( 12@22 )jv 6Ju ((D]Q(I)QQ )iv ? (q Ztz2J) =z 1’ u,v 17 aQ) )
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81‘2ij

= diubju, (30)
011w
—ai:;i (¢12<1>;;)w (élgrb;;)jv + (<I>12<I>2_21)w (q:lg@;;)ju,

(gzizjzLlig>u>v>1),

where ¢11u0 = (P11),,- The third and fourth sets of restrictions are similar to
(23):
Ohs

T3 = VO (B'la—l}l{)fll> =0and r4 = vo (B§ E?E(I)Q'Ql) =0, (31)

where h, = hy (B) in this section is an oblique rotation criterion to be optimized
by Bi. The dimensions of r3 and 74 are each g% — q.
The number of the overall restrictions © = (r},75,r5,7') = 0 is
ne=pg+(+49) 2+ —q+¢ —a=pg+ (5 -3q) /2, (32)
while the total number of the parameters in By, Bg, ®19, ®11, oo and ¥ is
np=py+patat+ (¢ —q)/2+ (=) /2+p
=2pq+p+2¢° — ¢ (33)
which gives the unchanged number of the independent parameters n, — n, =

pg+p—(¢°—q) /2.

5. Models for Standardized Manifest Variables

The models for standardized manifest variables for orthogonal and/or oblique
factors can be obtained by replacing X in (4}, (18) and (27) with the population
correlation matrix P for manifest variables. Let D = diag(dy,...,d,) be the di-
agonal matrix with the i-th diagonal element d;, (i = 1,...,p) being the standard
deviation of the i-th unstandardized manifest variable. Then,

Y = DPD (34)

and the covariance matrices for standardized manifest variables corresponding to
(4), (18) and (27) are

Y =D (B1®12B5+ ¥) D, (35a)
S = D (B1®@12®y; @2 ®12B5 + ¥) D, (35b)
5= D (B181585 60 87! ® 1, By + ¥) D (35¢)

with DiagP = I, and Diag®,; = Diag®y, = [,
The information matrices for the models of (35) will be given in Appendix
1 (see (Ad4)). All of the restrictions described in the previous sections should be
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imposed on the corresponding parameters in (35). Since P is a correlation matrix,
we have p additional restrictions for each of the models of (35). That is,

r; = (DiagP) 1, — 1, = {Diag (B1®12B5 + ¥)}1, -1, = 0, (36)

where 5 is a px 1 vector and 1, is the px 1 vector consisting of ones. Note that (36)
holds not only for (35a) but also for (35b) and (35c¢). For (35b) the restrictions
$19®5,'®2; = I, have already been imposed by (21) and the restrictions can
be substituted for (35b), which yields (36). Similarly, for (35c), the restrictions
By = $10®5, P21 (see (29)) can be substituted for (35¢c), which gives (36). The
common partial derivatives of r5; with respect to the parameters are

Opii Opii )
= 810 (Ba®a1)s . 2P 5 (Bi®1g)., (18 = 1, pit =1, .00),

Dbros s (B2®21);, Dhooer is (B1®12);,, (1,8 4 q)
a 7t .

£ - bliubQi’Ua (7' - l; o piu, U = 17 (RE2) Q)v (37)

aqbl?uv

Opi; .

_:51:7‘7):17“'7 )

By, = s (4,8 p)

where p; = (P),;, and ¢, = (¥),.. The number of the additional restrictions in
(36) for each model for standardized variables is p, while the additional parameters
are dy, ...,d, whose number is p. Hence, the independent numbers of parameters
are unchanged by standardization of manifest variables.

6. A Numerical Example

A numerical example based on the correlation matrix for eight physical vari-
ables {N=305; Harman, 1976, p.22) will be presented. Table 1 shows six rotated
solutions with the assumption of a two-factor model: the principal factor solution,
the raw- and normal-varimax solutions, the raw- and normal-direct quartimin so-
lutions, and the normal oblique varimax solution (Crawford, 1975; Browne &
DuToit, 1992). The principal factor solution (B’B : diagonal) is a kind of max-
imum likelihood solution, which is obtained from the spectral decomposition of
AN

Table 2 gives the theoretical estimates of the asymptotic correlations between
the estimated loadings for Factors I of the principal factor- and normal varimax so-
lutions for standardized variables. Table 2 also shows the corresponding simulated
values, which have been obtained in the following way. First, the fitted correlation
matrix by the two-factor model was regarded as a population variance-covariance
matrix. Based on the population covariance matrix, random observations of the
sample size equal to the real one (N=305) were generated under the assumption of
multivariate normality. From the generated data, the parameters were estimated
with factor rotation. For a rotated solution. we still have the indeterminacy of
the signs and permutations in the columns of a rotated loading matrix, which has
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Table 1: Estimated loadings for the eight physical variables

Varia- Principal Raw Normal
ble factor varimax varimax
No. I II I 11 1 31

1 86 31 871 267 863 .293
2 .84 43 931 159 926 .187
3 82 41 .899 158 894 185
4 .83 33 .864 232 8T  .258
5 .75 -.59 .254 920 227 927
6 63 -.49 212 769 189 .775
7 b7 -.51 151 749 129 753
8 .60 -.32 292 615 273 .623
Raw Normal Normal

Varia- quartimin quartimin oblique
ble varimax
No. | I 1 II I I

1 869  .084  .869 .083 .85 .14
2 967 -.049 968  -.000 94 .21
3 932 -042 933 -.044 .90 .25
4 872 .047 872 046 .85 11
5 005 .952 -.007 958 .06 .93
6 004 .796 -.006 801 .05 .78
7 -.057 789 -.066 793 -.01 77
8 136 607 .129 610 17 .60
@21 463 473 .36

Note. I{II)=Factor I(II)

been removed by selecting the solution which is closest to the population loadings.
The estimation was repeated 1,000 times and we had 1,000 estimates for each pa-
rameter. The simulated correlations are the correlations computed from these
values. The simulated values in Table 2 are close to the corresponding theoretical
values.

Table 3 shows the theoretical asymptotic correlations for the five combinations
(A-E) of orthogonal and/or oblique solutions. The values are for the correspond-
ing parameters for two solutions. That is. for the combination A, the values for
Factors I for standardized variables are the diagonal elements of the theoreti-
cal asymptotic correlation matrix in Table 2. The value acor (quSn gl,d}gg 21) in

Table 3 is the estimate of the asymptotic correlation between (611)21 = qnbll 21

and (@22)21 = (3 21. The results in Table 3 include those for unstandardized
variables, which have been obtained by regarding the sample correlation matrix
as a sample variance-covariance matrix. From the table we see that when two
solutions are rather different (e.g., A), the absolute values of the correlations be-
tween them tend to be small and the correlations can be negative. In contrast,
the correlations become very high when two solutions are similar (B, D and E).
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Table 2: Correlations between the estimated loadings
for the eight physical variables (standardized variables)

(1)Theoretical values of the asymptotic correlations
Principal factor solution: Factor I
1 2 3 4 5 6 7 8

1 .22 a3 18 16 -32 -28 -31 -.15
Normal 2 -01 .10 .01 .02 -33 -27 -29 -16
varimax 3 .13 .10 .27 15 -27 -22 -24 -1l
solution: 4 .18 .17 .21 .31 -.28 -24 -26 -.12
5 .25 26 .27 .26 .83 .42 34 35
Factor] 6 .20 .22 .21 .21 47 83 .23 .24
v 15 15 .15 .15 49 31 .85 .25
8 .23 .26 .25 .23 .24 .14 .10 .76
(2)Simulated values of the correlations
Principal factor solution: Factor I
1 2 3 4 5 6 7 8
I .24 .14 20 .18 -32 -25 -29 -.19
Normal 2 .01 .12 -01 .03 -30 -28 -25 -.21
varimax 3 .16 .08 .28 .12 -26 -19 -25 -.11
solution: 4 .19 .13 .22 34 -26 -18 -22 -.08
5 23 .28 .27t 26 8L 41 35 34
FactorI 6 .16 .18 .19 21 44 8 .21 .24
7 .14 17 .15 11 .51 .30 .86 27
8 24 21 24 26 26 .15 .10 .75

The correlations between the orthogonal and oblique solutions are moderate or -
high in this case (C). The value (.99) of acor (g?)u 91, oo 21) for the combination
E is common to the cases of unstandardized and standardized variables, which
comes from the property of normal solutions described in Appendix 2.

Table 4 gives the results of the tests of the equalities between two corresponding
factor loadings {factor correlations). These are based on the asymptotic normality
of the maximum likelihood estimators. The z-scores are obtained from, e.g.,

i)lij - BZij 73 (38)
{aée (B]_ij)z + ase (Egij)z — 2ase (811']') ase (620‘) acor (Blij7f)2ij)}

(=1, pid = 1,0

zij =

which is asymptotically distributed according to the standardized normal distri-
bution when by;; = bg;;. The chi-squares in Table 4 are obtained in the following
way. Let by(;y and by;) be the i-th columns of B; and By, respectively. Then, it
can be shown that

X'Z = (51(1‘) - E’2(1‘))/ {a’c'ch (61(1‘) - 32(1))}_1 (bm') - 52(1')) (39)
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is asymptotically chi-square distributed with df = p, when by, = by;y. The
matrix acov(-) in (39) is the estimate of

acov (Bl(i) - 62(2')) = acov (31(1-)) + acov (62@))
—acov (El(i),32(1)> — acov (62@), 61(1‘)) , (40)

where acov (61(1')7 52(«5)) is a pxp asymptotic covariance matrix of Bl(i) with respect
to b2(i)'

In Table 4, we find that the normal and raw solutions by the same rotation
methods (B, D) do not show significant differences except for the case of the
standardized variables for B. This corresponds to the similarities of the raw and
normal solutions shown in Table 1. Notice that the normal oblique varimax and
the normal/raw quartimin solutions in Table 1 are similar in a practical sense
with slight advantage in terms of a simple structure for the quartimin solutions
over the normal oblique varimax solution, while the statistical test for E shows
significant differences. This means that the difference is small but it is statistically
stable. The difference between the factor correlations (.473 vs. .36) may not be
small even in the practical sense, while z= -11.2 for this difference. (The value of
z= -11.2 for gf&n 91 — ¢A722 91 in E is common to the cases of unstandardized and
standardized variables, which comes from the results shown in Appendix 2.)

In Table 4, we see that the absolute values of z and chi-squares for the cases
of standardized variables tend to be greater than the corresponding values for
the cases of unstandardized variables. These tendencies are associated with the
relatively small standard errors of parameter estimates for standardized variables
(not shown here), which gives larger absolute values of 2 (see (38)) on condition
that the variances of unstandardized variables are set at unities for comparison
and that the asymptotic correlations between parameter estimates concerned are
on the same level.

Table 5 shows the estimates of the correlations between two sets of rotated
factors with their corresponding standard errors. The simulated values in Table
5 have been obtained from the standard deviations of the 1,000 estimates of each
parameter in the simulation mentioned earlier. The theoretical standard errors are
close to their corresponding simulated values except for the cases with very small
values (e.g., .000003). Since the results for the two sets of normal solutions {C and
E) for unstandardized variables are equivalent to those for standardized variables,
only one of the two sets are shown. This is a general result and will be explained
in Appendix 2. The values of the correlations between the corresponding factors
(the diagonal elements of @13) for similar solutions are very high (B, D and E)
and are accompanied by small standard errors. The absolute values of correlations
must be less than or equal to one. Hence, the confidence interval for a correlation
(<I>12)ij may violate this restriction. For this case, a variable transformation such
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Table 3: Asymptotic correlations between the estimated loadings
and factor correlations for the eight physical variables

(A)PF (B)RV (C)NV (D)RQ (E)NOV
vS. vS. vs. VS. vs.
Factor NV NV NQ NQ NQ

Variable Uns. Sta. Uns. Sta. Uns. Sta. Uns. Sta. Uns. Sta.

-.18 -.65 1.00 1.00 .98 .90 1.00 .99 .99 .96
-.38 -.53 1.00 1.00 .98 .95 1.00 .99 .99 .98
-.45 -.51 1.00 1.00 .99 .96 1.00 .99 1.00 .99
-49  -66 1.00 100 .98 .97 100 1.00 100 .99
acor (¢11 21,622 21) 99 .99 99
Note. Uns.=Unstandardized variables, Sta.=Standardized variables,

P¥=Principal factor solution, NV=Normal varimax solution,

RV=Raw varimax salution, NQ=Normal quartimin solution,

NOV=Normal oblique-varimax solution.

1 91 .22 100 .99 99 93 1.00 1.00 .99 .96
2 .90 100 1860 .99 98 72 1.00 100 .99 .87
3 .90 .27 100 .99 .98 .82 1.00 100 .99 .92
I 4 .90 31 100 .99 99 92 1.00 100 .99 .96
5 .69 .83 93 99 .83 .59 .97 .98 .93 .94
6 .70 .83 .96 .99 .76 .80 .97 .98 .96 97
T . .85 97 1.00 .76 .81 .98 .98 97 97
8 .72 .76 98  1.00 .89 .92 .99 99 .99 .99
1 -36 -73 92 .99 .67 .71 .99 1.00 .95 .96
2 -44 -73 .90 99 47 .54 .99 1.00 .89 .92
3 -48 -76 91 99 .56 .63 .99 1.00 .92 .94
II 4 -42  -76 93 .99 67 .72 .99 1.00 .95 .96
5
6
7
8

as Fisher's z-transformation can be used (see Browne, 1982). For the results of
Table 5, the transformation does not seem to be needed. The standard errors in
Table 5 are rather small (< .05).

7. Discussion

Since the covariance structure models for manifest vartables in our methods
include two rotated solutions. the sizes of the information matrices tend to be
large. The size of an augmented information matrix is n, + n,. The largest
one is for the model for two oblique solutions for standardized variables. Noting
that additional p parameters and p restrictions are needed for the models for
standardized variables. the size becomes (see (32) and (33))

Ny +np = {pq - (5q2 - 3q) /2} + (2pq+p +2¢° - q) + 2p

= 3pq+3p + (Qq2 — Sq) /2. (41)
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Table 4: Tests of the equalities of the correspondeing loadings
and factor correlations for eight physical variables

{APF (B)RV (C)NV (DYRQ (EYNOV

vs. vs. vs. vs. Vs,

Factor NV NV NQ NQ NQ
Variable Uns. Sta. Uns. Sta. Uns. Sta. Uns. Sta. Uns. Sta.
1 - -3 1.9 4.0 -8 -8 A 5 -3.3 -3.5
2 -3.3 4.7 1.7 3.1 -4.2 -4.4 -6 -.9 -4.3 -4.6
1 3 -3.1 -4.1 1.7 3.1 -4.1 -4.3 -.6 -1.0 -4.4 -4.6
for 4 -1.1 -1.3 1.8 3.8 -1.8 -1.8 1 .2 -3.6 -39
I 5 11.1 29.3 2.1 52 74 85 1.2 1.3 58 6.3
6 97 195 2.1 55 7.4 85 1.2 14 58 6.3
7 94 19.0 2.1 55 74 84 1.2 14 6.2 6.8
8 80 11.3 2.1 57 66 7.5 1.3 1.4 43 4.5
x2 196 1238 9.5 64 121 1096 2.5 3.3 48 111

¥ SH<p<. 75 *x 95 < p < .975 ok
#ok ¥k *k 95 < p < .975 *ok
1 .2 3 -1.8 -51 7.8 9.3 1 .2 7.1 83
2 39 46 -1.9 -5.2 7.8 8.9 4 .6 7.2 8.2
z 3 35 4.0 -1.9 -5.2 7.8 8.9 | .6 7.3 8.3
for 4 1.1 1.3 -1.8 5.1 7.8 9.2 2 .3 7.2 83
II 5 -23.0 -28.9 -1.8 -4.0 -2.6 -2.7 -1.2 -1.3 -3.4 -3.5
6 -16.4 -22.1 -1.7 -3.1 -2.4 -25 -1.2 -1.3 -3.5 -3.6
7 -15.5 -21.2 -1.6 -2.4 -4.1 -4.2 -1.2 -1.4 -4.5 4.7
8 -11.2 -13.3 -1.8 -3.7 1.0 1.0 -1.2 -1.3 -1.0 -1.0
xz 101 20206 3.6 47 112 1096 2.5 3.6 87 665
*x Th5<p< 9 *ox 95 < p < 975 **

%% * ¥ b2 3 75 < p < 9 %k

= for (bu 21 — (f)z'_) 21 -1.3 -1.4 -11.2

Note. For (A) through (E), the order of the two solutions for z is such that
the loading for the 1st solution minus that for the 2nd one.
Uns.=Unstandardized variables, Sta.=Standardized variables,
PFEF=Principal factor solution, NV=Normal varimax solution,
RV=Raw varimax solution, NQ=Normal quartimin solution,
NOV=Normal oblique-varimax solution. The two asterisks
stand for p < .001 for x*° test with df = 8.
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Table 5: Correlation between factors for the eight physical variables

Uns. Sta. Uns. Sta.

Estimates ( SE ) ( SE ) Estimates { SE ) { SE )
(A) Normal varimax solution
Principal I (T S) (T S) 1 (T 8) (T S)
factor I .78 (.031 .031) (.014 .015) .62 (.039 .040) (.018 .019)
solution II  -.62 (.039 .040) (.018 .019) .78 (031 .031) (.014 .015)
(B) Normal varimax solution
Raw I (T 8) (T 8) 11 (T S) (T S)

varimax I .9996  (.0005.0005)  (.0002.0002) .03 (015 .015) (.006 .006)
solution II  -.03 (015 015) (006 .006)  .9996 (.0005.0005) (.0002.0002)

() Normal quartimin solution

Normal I (T 8) I (T 8)

varimax I .97 (.007 .006) .24 (.026 .026)

solution II .24 (.026 .026) .78 (.007 .006)

(D) Normal quartimin solution

Raw I (T 8) (T 8) I (T S) (T 8§)
quartimin I 8999996 (.000003.000009)(.000002.00002) .47 (.048 .048) (.048 .048)
solution II 46 (048 .047) (.048 .047)  .99994 (.00009.0001){.00009.0001)
(E) Normal quartimin solution

Normal I (T S) I (T §)

obligque I .998  (.0005 .0004) Al (043 .043)

varimax I .42 (.043 .043) .998  (.0005 .0005)

solution

Note. Uns.=Unstandardized variables, Sta.=Standardized variables,
SE=Standard errors, T(S)=Theoretical(Simulated)values, I{II)=FactorI(II).

When e.g.. p = 20 and g = 5, (41) is 460. We have to take the inverse of the
augmented matrix, though only once, and the method of taking the inverse of a
matrix is an algebraic one without iterative approximation. Since usually only
the submatrix I* in I;l is of interest, it is possible, if necessary, to reduce the
problem size substantially by using the formula for the inverse of a partitioned
matrix when [ is singular:

-1
I'=J"'—J'H (H’J_IH) HJ, (42)

where J = I + HH' and H = 8r' /90 (see Silvey, 1975, p.178 and Browne, 1982,
p.93; see Rao, 1973, 4i.1-2 for associated topics).

In the previous section for a numerical example, the chi-square tests were
carried out separately for each pair of corresponding factors because each factor
was a natural unit for testing the equalities of solutions. The comparison units
can be changed if necessary. For instance, overall comparison between By and

B, may also be of interest. However, we should note that acov (vec (Bl)) and

acov (vec (Bg)) are singular when B, and B, are solutions in exploratory fac-

tor analysis. Among the elements of By and By, at most pg — (¢® — ¢) /2 and
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pq — (q2 — g) elements give non-singular acovs for orthogonal and oblique factor
models, respectively.

An additional application of the asymptotic covariances/correlations between
Bl and Bg is the construction of the confidence intervals for functions of Bl and
By (and estimated factor correlations) by using the asymptotic standard errors of
the functions. For instance, Tucker’s factor congruence coefficient, i.e.,

’

Bl(i 52(1')

\/bl( \/b2( 1Bt

is one of the functions used in practice. The asymptotic standard error for (43)
can be easily obtained by using the delta method. Ogasawara (1999b) derived the
asymptotic standard error for (43) in the case when B; and B, are independent.
However, since they are not independent in our case, the acovs between B; and
By should be considered. Tucker's coefficient for overall factor congruence can

also be defined by using vec (Bl) and vec (32) The asymptotic standard error

Ji=1,..,q), (43)

for the overall congruence coefficient can be similarly obtained (the singularities
for acov (vec (31)) and acov (vec (Bg)) are irrelevant for this case}.
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Appendix 1. Information Matrices

1. Models for Unstandardized Manifest Variables

To obtain the (7,7)th element of an information matrix (see (7)), we need
JL/00; and 0¥ /00;. Some of the elements of information matrices may become
simple by expanding the trace term. However, the expressions without expanding
the trace are sufficient for exact computation.

In the following the lowercases denote the elements of the matrices denoted by
the corresponding uppercases. The locations of the elements are denoted by the
subscripts.

1) Two Sets of Orthogonally Rotated Solutions (see (4))

ox ox
O [4®1B, == = B, &,
ablst st¥12L09, 6b25t 1¥124¢s,
ox : ox
=B11wB, — =1 Al
Bd)l?uv et (91/15 5 ( )

(s =1, ..;,p;t,u,v =1,...q),
where I is the matrix of an appropriate size whose (s,t)th element is one and
others are zero.

2) An Orthogonally Rotated Solution and an Obliquely Rotated Solution (see
(18))

ox I2)))

—— = 149128, =—— = B1® ] =1,...,p:t=1,....q9),
Fb1er stP12D5, Dbgar 1P124¢s, (S sy P ) Q)
ax.

a@lqu - Bl (ZIU'U + ¢12¢52111’u¢12) Bé’ (ua v = 19 ..-sQ) )
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)

pr— ~B1912%P5) (Tuw + L) ®39 021212 B) (A2)
D22uy
- _31©12¢;21 (Iuw + Iv’u,) Bé, (q Zu>n> 1) s
ox
-512‘*; = 1557 (S = 1, ...,p) .

3) Two Sets of Obliquely Rotated Solutions (see (27))

oY )
ab_lst = ST¢12B‘,7 5’[);; = Bl‘b]?]ts, (S = 11 ---:p;t = l: -'-,Q) ]
Y. _ N
G = B (20w + D129 Lou® [ 012) By, (w0 = 1,.0,9),
% _ _ _
T~ —B1®1205, D218} (Tuw + Luw) ] 1285 (A3)
1luw
= —B1 (Luw + ) 7' @12B5, (> u>wv > 1)
oY% B
= ~B19190%) (Luw + L) B, (q>u>v 2> 1),
a¢22uv
Fi)>
%—S = I.SS) (S = 1, ...,p) .

2. Models for Standardized Manifest Variables (see (34))

35 = IiiPD + DPIii, (Z = 1, ...,p) y (A4)
oY, oP
o6, - Pag D

where ¢; denote the parameters except dy,...,dp in (35). From (35), we see that

or
the forms of 50, are equivalent to (Al), (A2) and (A3), though their values are

different unless D =I,.

Appendix 2. Properties of Transformation Matrices When Kaiser’s
Normalization is Employed

Let a p x g factor loading matrix A = (};;) be rotated to B by a rotation
method with Kaiser’s normalization. Let H be the diagonal matrix with the i-th
diagonal element being the square root of the communality of the i-th manifest

variable (ie., (H),; = Z)\ )12}, A rotation method with Kaiser’s normal-

ization transforms the rows of A such that A* = H~!A. Then, A* is rotated
to B* = A*T by a transformation matrix . The rotated loading matrix B* is
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denormalized as B = HB* = HA*T = HH 'AT = AT. From this equation we
find that T is also a transformation matrix from A to B, though it is determined
by A* not by A. Then, we have the following proposition.

Proposition. Let T be a transformation matrix from an unrotated loading
matrix A to a rotated loading matrix B by a rotation method with Kaiser’s
normalization, where A is a maximum likelihood estimate in an exploratory factor
analysis model and the rotated factors are orthogonal or oblique. Then, T is
independent of the scales of manifest variables.

Proof. Let A* = (A ) be a row-normalized unrotated factor-loading matrix

corresponding to the unrotated loading matrix A = (/\w)- Suppose that the
standard deviation of the i-th manifest variable is multiplied by an arbitrary
positive number k. Then, from the scale freeness of the maximum likelihood
solution for an exploratory factor analysis model, we have ;\ij = I;:/A\ij, where k is
the estimate of k and a parameter with tilde denotes the estimate after the scale

.. . T a2 . T, \2 o
transformation. Since A; = k’\ij/{z (k;)\ij> P2 = )\,-]-/{Z ()\ij) 32 - Aijs
j=l j=].

we have A* = A*. By applying this result to other manifest variables, we see that
A (: A*) is independent of the scales of the p manifest variables. From this and

the fact that 7" is determined by A*, the result of the proposition follows. []
Using the proposition we have the following corollary.

Corollary. Let <i>12, (i>11 and <i>22 be the maximum likelihood estimates of the
parameters in the previous sections. Suppose that they are obtained by rotation
methods with Kaiser’s normalization. Then, the covariances of the estimates of
the parameters in ®15, ®1; and ®95 are independent of the scales of manifest
variables.

Proof. Let T; and T be the estimates of the transformation matrices with
Kaiser’s normalization. From the result of the above proposition T 1 and Tz are
independent of the scales of the manifest variables. Since &1, = 7775, &1 =
T!T, and ®92 = T4Th, these matrices and consequently their covariances are
independent of the scales of the manifest variables. []

The result of the corollary suggests a nice property of Kaiser’s normalization.



