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Abstract

The linear programming relaxation is a typical prescription for solving
the multiple-choice knapsack problem. The efficiency of the relaxation ap-
plied to the problem has been validated in the literature whereas it is also
well known that the relaxation does not always work well for the problem.
In this paper we have devised another relaxation for the problem. With

profound regret, the result is negative.
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1 Introduction

This paper focuses on the Multiple-Choice Knapsack Problem (MCK), which
has been intensively studied in the last two decades. In addition, the prob-
lem has many applications as summarized in Dyer et al [7]. Recently, an
application of MCK was presented by Pisinger [17]. Also, an early review
of MCK is seen in Dudzifiski and Walukiewicz [4].

The MCK is an extension of the classical 0-1 knapsack problem (KP).
The KP is, given # items of profit and weight, to pack the items into a knap-
sack of capacity ¢ so that the total profit of the packed items is maximized
without the total weight of those exceeding the capacity. The KP is formal-
ly stated as follows:

(267)
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k=l

n
(KP) maximize D, p;x;
=

n
subject to D wjz; <c
=
r; €{0,1}, j=12,.., n,

where each index j indicates an item. On coefficients p;, w; and 0-1 vari-
able x; corresponding to an item associated with j: the first two represent
the profit and weight of the item respectively; the last does the choice of it
as z; = 1 (packed)/0 (otherwise). For a comprehensive overview of recent
studies on KP, see Martello et al [13].

Furthermore in MCK more complicated, all items are split into several
classes so that any pair of the classes is mutually disjoint, and we must
select just one item in each class. To formulate MCK, we introduce several
notation: To begin with a class V; of cardinality #;, ie. N;={1, 2,...,#;}. In
addition, m (> 2) classes are given and Z;ez%; = #, where M ={1, 2,..., m}.
In what follows we assume that an element in a class is one-to-one corres-
pondence to an item, and we call an item associated with j € NV; the j-th item
in N; On the three corresponding to the j-th item in NV;: the profit and
weight are denoted by p;;, w;; respectively; 0-1 variable is by x;. Also, we
call an #-vector of £=(x11, Z12.--., Zm,»,) solution. Now, the MCK is formu-

lated as follows:

(MCK) maximize 2, 2, Pij%i (1
ieM jeN;
subject to 2. 23 wijxy; <c¢ 2)
ieM jeN;
2 z;=1, i€M @3)
JEN;
z;; €{0,1}, i€M, j EN; 4)

Throughout this paper without loss of generality we assume that: profit p;
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and weight w;; for any 4, j and the capacity ¢ are all positive integers; n; > 2

for any ¢ € M; in order to exclude an infeasible or trivial problem,

min w;; < ¢ < 2, max w;;
fgz:u jen; ¥ iEZM jen; Y ®)

A typical relaxation for MCK is the linear programming (LP) relaxation
in which the constraint (4) is relaxed as z;; > 0 for any 4, j. We call the re-
sultant problem LMCK, for short. The LMCK has been utilized to solve MCK
so far, e.g. Sinha and Zoltners [18], Armstrong et al [2], Dyer et al [6], and
Pisinger [15]. Moreover, LMCK itself has also been studied by, e.g. Glover
and Klingman [9], Zemel [20, 21], Dyer [5], and Dudzinski and Walukiewicz
[3]. Both [21] and [5] especially include a linear time algorithm for LMCK.

On the other hand, two types of Lagrangian relaxation (see, e.g. Fisher
[8]) were examined by Nauss [14], in each of which the constraint (2) or (3) is
absorbed into the objective function(1). On a comparison between the two,
computational experiments in [14] explains that an algorithm which incorpor-
ates the first relaxation, ie. based on(2), dominates another which does the
second (plus one more). The first relaxation was also employed in Aggarwal
et al [1] and the aforementioned [7]. In fact, as pointed out in [14], the dual
of the first relaxation is equivalent to LMCK, which is also implied in [1]
(p.221), and can also be seen in an algorithm proposed in [7] to solve the dual.

The remainder of this paper is organized as follows: In Section 2 we
briefly review the competitor LMCK. In Section 3 we construct a relaxa-
tion problem which will give a bound tighter than that of LMCK.

2 Linear programming relaxation

A point for solving a given problem is to reduce the problem, in other
words, to eliminate items sans which the objective function value can be
maximized. The following was proved in [14], which is efficient to reduce
MCK (see [18], TABLE I in p.511).
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Theorem (Nauss, 1978) If p;; > p;z and w;; < wy, then adding the constraint
x;=0 to MCK, has no effect on the optimal solution value for the MCK.

Now we may assume that in each class there exist no two items so that one
has the same profit or weight as the other’s. Moreover for LMCK, the fol-

lowing was proved in [18].

Proposition (Sinha and Zoltners, 1979) Let j, %, [ € N; with wy < wip < w;
and p;; < pir < py and (Bir — pij) / (wip — wip) < Pi— pin) / (Wi — win)
then an optimal solution to LMCK exists with z;,=0.

By Theorem and Proposition, it follows that promising items for LMCK form
an upper convex boundary in each class, see Figure 1. In the following we
review an upper bound given by LMCK, that is, its optimal (solution) value.
For simplicity we assume that LMCK has already been reduced, and in each
class all remaining items are ordered so that w; < wy < -+ < w;,, which
also induces p; < pj2 < *** < p;.. Note that since either Theorem or Prop-
osition does not rule out an item of minimum weight in each class, the first

half of (5) is still valid while we assume the latter half again if necessary.
B Sa

X unpromising items

N

= an item plotted

Figure 1: promising items in V; for LMCK

First of all we define a slope s;; = (p; j+1— ps) / (w;j+1— wy) for i € M,
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1 < j < n; which is as in Figure 1 a gradient of the line joining the j-th and
(j+1)-st items in ;. As seen in, e.g. [15], it is known that obtaining the opti-
mal value is finding a slope sj; satisfying W < ¢ <W—wp;+ wp, 141, where

w = Z wa + 20 (i je1—wy) } 6
iem Glsg > su)
(We assumed for simplicity that there exists no slope equal to sz;). The W
reduces to a weight sum of m items in which no two items are in the same
class, since in each class slopes have already been sorted in descending order
by the assumption. To find such sz, first, we sort all slopes in nonascend-
ing order, and initialize W with X;cp; w;;. Next, on the head of a sequence
of the slopes sorted, say s41, we replace wy; included in W with wys, and ex-
clude the s41 from the sequence. Namely we augment W along the slope
s41, since the greater the s;; the greater the profit gained proportional to the
increased part of W by a replacement with s;;. Similarly, while W < ¢ do
the replacement as the head of the sequence says. Consequently, with W
(6) of W < ¢ < W—wp;+ wp,;+1, we shall find sz; as a slope concerned with
the last replacement. Once the sz; is found, the optimal value is obtained as
PW+5,,(c— W), where PV is a profit sum of m items each of which contri-
butes to W. It should be noted that in the solution corresponding to the

optimal value just obtained, at most two x;;’s violate the integrality as

2 =W —wp+wp 41— )/ (Wp 141~ wry)

Tpl+1= 1 —Xp = (C - W)/(wk,zﬂ - wkl)

even though the integrality for all x;’'s was relaxed, which distinctly
accounts for the efficiency of LMCK.

On the other hand, LMCK includes an issue. Specifically, the optimal
value is sensitive to the distribution of items. When profits and weights are
randomly distributed in a fixed range, Proposition plays a central role and
LMCK works efficiently. In Example 1 below, however, Proposition results



272 W% O K OESE F4F

in neglecting characteristics of the distribution of items.

Example 1. Consider an instance of MCK with two classes; Items in each
class are (p;1, w;1)=(1, 1), (b2, wi2) =2, 9), (Ps3, wiz) =(10, 10) for i=1, 2
(see Figure 2). In this example, the optimal value of LMCK is always
equal to capacity ¢ so long as 2 < ¢ < 20. However, that of MCK with
¢=10is 3, and with ¢ =19 it is 12. In both cases, the gap between
the two reaches up to 7. Moreover, if many additional items were in

the lower-right quarter of Figure 2, nothing influenced LMCK.

B
10— ¥

Figure 2: Example 1: the distribution of items in N; or Ng

Especially in the case where slopes are constant, LMCK makes no sense. It
arises for instance when the profit is equal to the weight for any item, we
call an MCK in which case (ie. p; = w;; for any 4, 5) Multiple-Choice Subset-
Sum Problem (MCSSP). As easily observed, the LP relaxation applied to
MCSSP brings the capacity as the optimal value in the exactly same way as
that to a KP in which case. Therefore, the hitherto proposed methods
which employ LMCK will show poor performance to MCSSP. Computation-
al experiments of applying a state-of-the-art method to MCSSP are pre-
sented in [15].
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3 An alternative to LMCK

Since as mentioned in Introduction there exists a linear time algorithm for
LMCK, it will not be easy to develop a relaxation problem solvable more
efficiently than LMCK. Hence, to attain the title of this section, there will
be no alternative but to develop one which gives a bound tighter than
LMCK. In this section we construct such a problem. _

Throughout this section, in each class, we assume that there exist no
two items so that one has the same profit or weight as the other’s by
Theorem, and all items are sorted in ascending order of its weight, ie. w; <
wip < ot < wiy, for any 1 € M.

To begin with we apply a preprocessing to MCK: Suppose that an item
of minimum weight (also of minimum profit) in each class has already been

packed, and coefficients of remaining »# — m items are transformed as follows:
! = -
[ pij - pij b
7
Wi = Wy — Wi,

Accordingly, the capacity diminishes by X;epw;. As a result, the con-
straints of MCK (3)-(4) are replaced with

7;

Z .1,’2:7' < 1, ie M

i=2

75 €0, 1), i €M, j=23...m

where X752 z; = 0 implies that the st item is selected in IV;; otherwise the
j-th is, provided x;; = 1. Moreover, those of LMCK corresponding to the

above are as follows:

Zﬂ z; <1, i€EM
i=2 )
25;>0, i €M, j=23,...,n.
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This represents LMCK just before augmenting initialized W as described in
Section 2.

From a theoretical viewpoint, our aim of a bound tighter than LMCK
will be achieved by the optimal value of a problem involving constraints of
intermediate strength between the two above, in other words, constraints
defining a feasible region which completely includes that of MCK and is
strictly included in that of LMCK. In view of LMCK permitting of up to
two variables of positive value within some class, ones for our aim are un-
iquely determined. We hereby formulate a relaxation problem involving

the ones:

n;

maximize >, Z D ij +Z}:Mp,-1
1€,

ieM j=2
ﬂ
subject to Z Wi X < ¢~ 2w
ieM j=2 ieM
2
z; <1, i €EM
j=2

x; 20, 1EM, 7=23...,n;
.Z‘isz'k=0, €M 2<j<k<um

We call this one-fractional relaxation problem (1-frp, for short). The name
comes from its property, viz, we may assume that its optimal solution in-
cludes at most one z;; of value neither 0 nor 1 (Such z;; is a short while said
to be fractional). Indeed, when an optimal solution of 1-frp includes two
fractional z;'s, say {Z,s, Zs,), profit-to-weight ratio p,s/wys of én item corres-
ponding to x,s must coincide with that of an item to x;,. Therefore we can
modify the solution so that it includes at most one fractional ;.

Although a solution of 1-frp is an # — m vector, it can readily be trans-
formed back into an original z-vector: For any i € M, z;=p/q (j > 1,0<p
< ¢) implies x;; =(g — p)/q; otherwise x;; = 1, which is interpreted that the

value of the x; indicates the location of a point which divides a line segment
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joining the 1st and j-th items in V; in the ratio of p/g : 1 —p/q as A depicted
in Figure 3. Further, raising the point A vertically up to the A’, we will
obtain a feasible solution of LMCK due to the convexity of items promising
for LMCK, which illustrates 1-frp giving an upper bound not greater than
LMCK. In particular, on an MCK with #; = 2 for any ¢ € M, the optimal
value of 1frp coincides with that of LMCK (Also in this case, a problem re-
sulting from the preprocessing being applied to the MCK is a KP).

Wi

Figure 3: the gap between 1-frp and LMCK

In the following we state three points on 1-frp. In representing a solu-

tion appeared in the statement, we omit x;; of value 0 for convenience.

1. The total weight of an optimal solution of LMCK is always equal to
the capacity while that of 1-frp is not always so.

Example 2. Consider an MCK of m = 2; Ttems in each class are the
same as (p;1, wi) =2, 1), (P, wiz) =(6, 3), (i3, wyz) =(10, 11) for
i=1, 2. After the preprocessing, the 2nd and 3rd items in each
class remain as in Figure 4 With ¢ = 16, the optimal value of
LMCK is 17 by a solution, e.g. 213 = 1, Zos2 = 3/4, 203 = 1/4 while
that of 1-frp is 16, since after the choice of the 3rd item in one
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class, to select the 2nd item of profit 4 is better than two fifths of
the 3rd of profit 3.2 in the other despite remaining capacity 2.

Opt. of LMCK

21 2 4 8 10
Figure 4: Example 2, ¢ =14 or 18 after the preprocessing

Also in the same MCK with ¢= 20, that of LMCK is 19 by, e.g. 213
=1, 299 =1/4, x93 =3/4 while 1-frp gives |184] =18. On the 1-frp
in this case, four fifths of the 3rd item is better than the whole of
the 2nd.

2. The 1frp will be less sensitive to the distribution of items than
LMCK. More precisely, there exists an item which is redundant for
LMCK but is not for 1-frp.

Example 3. Consider an MCK of m = 2; Items in each class are the
same as (p, win) = (1, 1), (piz, win) = (10, 2), (3, wiz) = (11, 4),
(Ps4, wig) =(13,5) for =1, 2 and ¢=9. Items in each class after
the preprocessing are in Figure 5; Also the capacity ¢ diminishes
by 2. Then, the optimal value of LMCK is 25 by a solution, e.g.
x12=1/3, £14=2/3, x£24=1 while that of 1-frp is 24 by, e.g. L13=T24
=1. Thus, the 3rd item validates the point.
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Figure 5: Example 3, ¢ =7 after the preprocessing

Here a question arises that which items are screened out for 1-frp be-

sides those by Theorem. It is obvious that the following holds:

Observation. If the j-th and Ath items in N; satisfy w; < wy; < wi

and

bij—Pn < bir—Pa

Wij— Wi — Wi Wy

then there exists an optimal solution of 1-frp with x;;=0.

Clearly this is obtained by in each class fixing the j-th item to the 1st

in the assumption of Proposition.

. The 1-frp is completely useless for MCSSP with the same behavior as
LMCK. On this subject, we suggest that it will be more promising to
devise a tailored method by an argument similar to that for KP. The
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KP with the condition, that is, the profit is equal to the weight for any
item is particularly called Subset-Sum Problem (SSP), and several
methods tailored have been proposed so far, e.g. lida and Vlach[12],
Pisinger [16], and Soma and Toth [19]. The term of MCSSP is
according to [16], in which an algorithm tailored for MCSSP has

actually been proposed.

Then, how should we solve 1-frp? It might seem that after sorting

all profit-to-weight ratio of pfj/ng in nonascending order, the 1-frp could

be solved with an ordinary greedy approach. However, the one applied to

Example 4 below ends in failure.

Example 4. Consider an MCK of m = 2; Ttems are (p11, wy1) = (L, 1), (P12, wi2)

=(8,5), (P13 w13)=(9,9), (P21, w21) =(1, 1), (pop, wap) =(4,5), and ¢ =
10. After the preprocessing, the items are as seen in Figure 6. A
greedy approach applied to the 1-frp gives objective function value 10
by a solution (0, 1, 0), ie. (0, 0, 1, 1, 0) in original #-vector. However,
the greater 12 is gained by an optimal solution (1, 0, 1), ie. (0, 1, 0, 0,
1), which is the same as that of LMCK.

B B

8
7

1 21"

(1,1 4 g " a1 4"

. Figure 6: Example 4, ¢ =8 after the preprocessing
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In fact, except for its indices starting at 7 =1, the same problem as 1-frp has
already been examined by Ibaraki et al[10], in which the problem examined
is called P. In addition, Section 2 in[10]has already exposed several of char-
acteristics of 1-frp (ie. P) described above. According to[10], the P is NP-
complete and there will exist no linear time algorithm for it, which is also
suspected from that in the first half of Example 2 the total weight of the

optimal solution of 1-frp does not reach the capacity.

Notes. On P a relaxation problem introduced in [10] for P: In the formula-

tion of P, constraints not involving the capacity are the two below:

0<z;<1 i€M jEN, | @®)

At most one of Z;1, Zjp...., Z;n, is positive, for i € M. 9

The latter half of (8), ie. z;; < 1, can be replaced with Xjenz; <1,
since under the first half of (8) and (9) it follows that z;; < ;e N =
max;jen;Z;. Then, excluding (9) from P results in P involving z; > 0
and Yje nx; < 1 remained, which are almost the same as (7), ie.
those of LMCK transformed. Being different from LMCK, an optimal
solution of P may include just only one vvariable of not integer value
due to not Xje nx; =1 but < 1, also due to which P (and P too) does
not require the first half of (5).

In general, a slightly loose but quickly obtainable bound is more practic-
al than that of tight but expensive, viz. of much cost to compute it (see, e.g.
Tida [11]). A branch-and-bound algorithm proposed in [10] for P solves P
on each subproblem spawned, however, P is almost the same as LMCK. In
light of this although it is unknown in comparison with LMCK how much
tight a bound by 1-frp is, yet we should conclude that 1-frp is expensive and

quite unsuitable for MCK as a relaxation problem.
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At the beginning of this section we stated that a relaxation problem for
MCK being an alternative to LMCK will be the problem giving a bound
tighter than LMCK. Nevertheless as we have seen in this section it seems
that there exists no practical one between MCK and LMCK, or more specifi-
cally, between the former with no variable of not integer value in an optimal

solution and the latter with at most two such variables in that.
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