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Abstract

This article shows that on two formulations of the unbounded knapsack
problem, i.e. maximization and minimization problems, a set of dominance re-
lations for one defines a polynomially solvable special case for the other, and
also includes an additional discussion on the special case for the minimization

problem.
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1 Introduction

The article deals with the Unbounded Knapsack Problem (UKP, for short).
It will be formulated as follows:
n

(UKP) maximize 2, ¢jz;
=

n

subject to >, ajz; <b ey
= ‘
zj > 0 (integer), j=1,2,..,n.

As different from the ordinary 0-1 knapsack problem of z; € {0,1}, the avai-
lable number of any item is unbounded as x; >0 where each index j is one-to-

one correspondence to an item. Given # types of items (each of which is of
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profit ¢; and weight ¢;) and a knapsack of capacity b, the UKP is to pack the
items into 'the k‘napsackv so ‘that 'the‘ total profit of packed items is maximized
without the total weight of those ‘eXceedi‘ng‘the capacity. Throughout this
article without loss of generality we assume that both ¢; and ¢; associated
with any j-th item and b are all positive integers. '

There exist many contributions to UKP in the literature as seen in the
book by Nemhauser and Wolsey {5]. For example, a dominance relation is
one of them as studied by, e.g. Martello and Toth [4], Dudzinski [1], and Zhu
and Broughan [6]. Owing to the relation we have a more small-sized and
equivalent problem to an instance of UKP given. In additionf a_polynom_ially
solvable special case has also been studied by, e.g. Magazine et al [3], Hu and
Lenard [2], and Zukerman et al [7]. ‘ __

Before entering the main we briefly mention thé contents of this article,
which is divided in three: Section 2 connects dominance relations with poly-
nomially solvable special cases; Section 3 gives another proof to the result
obtained in the previous section; Section 4 discusses the special case pre-

_sented in [7] last year.

2 A connection between the two

To take an example of dominance relations, if in an instance of UKP (1) it
holds that @;>a;, and ¢;<¢; then j-th item is said to be dominated by 4-th.
This means that the optimal value of the _instarice can be achieved without
the j-th since a solution x with x; > 0 could be improved by xp <z + z;;
xj'- «0. According to this relation we assume in this section @; < a3 < - < @,
and ¢; < ¢z << ¢,, which are also assumed in [7].

Recently, a condition which defines a polynomially solvable special case
for UKP was presented in [7]. The formulation of UKP in [7] is not a maximi-
zation (1) but a minimization problem in which the constraint on the capacity

is of a form >b'and its objective function value is minimized. Hereafter we
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call the problem minimization UKP. The condition presented in [7] is as

follows:
¢+ < ldj+1/ajJ ¢, forj=1,2,..,n—1 2

In another view, for each j fixed, this is a dominance relation for UKP (1) as
in [4], that is, (j +1)-st item is dominated.}
Conversely the following is, also for each j fixed, a dominance relation

for the minimization UKP:
Ci+rl = [aj+1/aj] ¢, forj=1,2,..,n— 1 (3

Here a question arises whether the condition (3) defines a polynomially solv-
able special case for UKP (1) or not. As to the question the following answers,

“Positive.”
Observation. For UKP (1) with (3), an optimal solution £* with z},= | #/a,,| exists.

proof.- To begin with a trivial case a, > b may be excluded; otherwise, by (3)
there exists an optimal solution z* in which xj <[a;+1/a;] for any j <.
Indeed, if consider x with x> [ag+1/az] for some £2(<#) then y con-
structed as yp =z~ [@r+1/ar]; Yp+1=Tr+1+1; otherwise y; = z; could be
improved. Now we negate our goal, which brings z;,<|b6/a,]. Then,

”n n—1
2oz < 2 ([aja/aile —¢) +euxy,
j=1 j=1
n—1
< 2 (g—¢) + [b/ay)en—cn= |b/ay)c,—ci.
7=1 X

On the other hand the negation also brings 15/a,] ¢, < 2. ]7-‘:1 Cj ;.

Together, we have a contradiction ¢;< 0. ]

!By the definition of the floor function we have aj+1> |aj+1/4;la;, for j=1,2,
n—L
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Therefore, using (3) recursively we can solve UKP (1) with (3) by an ordinary
greedy approach: packing z-th item as many as possible; b~ b—|b/a,]l a,;
packing (z—1)-st item as many as possible; and so on. A point is that »-th

item is the most efficient under (3), that is, (3) implies

ci/m < co/as < - L cu/ay,. 4)

3 Another proof

In fact, a necessary and sufficient condition for a case where an ordinary
greedy approach solves UKP has already been exposed in [3]. In this section
we show that the condition includes (3).

The UKP discussed in [3] is of an equality constraint on the capacity, ie.

n n

z = min [ 2.6z | 2 aix; = b; xj =0 (integer), j=1,2,..., n} (5)
j=1 Jj=1

where b is a positive integer. Besides the integrality of ¢; and c¢;, assump-

tions in [3] are

ci/ay = colan = = c,/ay, 6)
l=aq<a,2<j<n @)

Before stating the condition in [3] we introduce two functions: Fj (y) (1<
k<n, 0< y<b) as one which is restricted in (5) such that only the first 2
items are available and a capacity is ¥ (ie. z =F,(d)); the other H,(y), under
the same restrictions as those on F3(y), the total profit gained by the greedy

approach as in the previous section.

Theorem (Hu and Lenard, 1976) Suppose Hj (y) =F} (y) for all positive integers
y and some fixed & If ap+1 >a and p and § are the unique integers for

which ap41=par—0 and 0 < d < @z, then the following are equivalent.
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(a") Hp+1(») < Hy(y) for all positive integers y,
(a) Hp+1(y) = Fp4q(y) for all positive integers ¥,
(b) Hp+1(pap) = Fpy (pap),

(©) cpe1 +Hy(8) < pey.

Hu and Lenard [2] added (2") to the one in [3], which simplified the proof.
Note that the relation between (a”) and (c) is the same as that between (a)
and (b), because (c) is transformed into Hy+1 (pap) < Hy(pap)?

On UKP (1) it is easily shown that Theorem still holds, provided: with
(4) instead of (6) since »-th item should be the most efficient for a greedy
approach regardless of the formulation of UKP; without (7), which is not
used in the proof, as seen in the statement of Theorem however it is
assumed that ¢; > 0 for any j (Hereafter such is denoted as > 0 concisely).
A difference is that both ‘<’ appeared in (a”) and (c) are replaced with ‘>’
due to being the maximization problem. For the same reason, while there
is no restriction on the sign of ¢;'s in [3] (also in [2]) we shall have ¢ > 0 on
UKP (1). To be more specific, considering 2 =1 and ¢; <0 we have H; (g;) =
¢1<0=F(a;). For Hy=F; thus c¢; > 0 is necessary; with (4), it moreover
brings ¢ > 02 Now obvious that Hj, > 0, which validates (3)=(c). Conse-
quently it can directly be proved by Theorem that the greedy approach solves
UKP (1) with (3) .

4 The special case for the minimization UKP

In this section we focus on the minimization UKP, and assume that a; < @z <
< gy, and ¢; < ¢ < -+ < ¢, as in Section 2, that is, follow (7].

- The work in [7] could roughly be summarized as follows: The condition

2Hyp 1 (pap) = Hpr1 (@41 +0) = cp+1 + Hyv1 (0) = e +Hy (3), since 6 < (@3, <) @p+1.
31n addition, using the assumption of Theorem recursively we have 0 < g; <
ap < -+ < a,, which implies 0 < ¢1 < ca << ¢y
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(2) implies the existence of an optimal solution x with z,>1b/a,]. Then,
using (2) recursively, an algorithm proposed in [7] first produces (possible)
two solutions such that x, = [#/a,] and x, = | b/a,]. T hé feasible former is
a candidate for optimality as is; after b < b — | b/a,] a,, based on the infeasible
latter in duplicate, it also produces (possible) two so that x,-1 = [b/a,—1] is
added to one and x,-; = |b/a,-1] to the other, respectively; and so on.
Last, among at most # candidates produced, the algorithm picks up the best.

The polynomially solvable special case for UKP (1) defined by (3) is
that a greedy approach solves it while the case by (2) is not so, which will
come from being the minimization problem. Namely, in the minimization UKP
an infeasible solution can be made feasible by packing more items whereas
in the other two UKPs, once the total weight of a solution has exceeded the
capacity, the solution will remain infeasible even by doing so.

In fact, the condition (2) is a sufficient but not a necessary condition for
the special case solvable by the algorithm above, which is illustrated by, e.g.
an instance of UKP below (z =2):

In this, co > 2 =|as/a1]cq; still, the algorithm finds 2; = 2= 1. Furthermore
“the instance does not follow (6) implied by (2). Namely, the algorithm solves
the instance even though it does not firstly take account of the most efficient
1st item.

Anyway, which condition is necessary and sufficient to strictly define a
class of the minimization UKP solvable by the algorithm above. Here we
would like to add that the algorithm fails on the above instance replaced
with 5 =4 or 6. To take a wild guess, the one will include the capacity. -

Especially # =2, it could naturally be stated as follows:
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min {[b/az] co, [(b—mas) /a;] c1+mes} _<_0mi<n {[(b—jaz) /a1l c1+jca)
<j<m

where m = [b/a; |4 How about in general? To the best of my knowledge
it is still open. '
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