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BIAS REDUCTION OF ESTIMATED STANDARD ERRORS
IN FACTOR ANALYSIS

Haruhiko Ogasawara∗

Formulas for the asymptotic biases of the estimators of the normal theory standard
errors in factor analysis are given with and without the assumption of multivariate
normality for observed variables. The biases are derived from the asymptotic vari-
ances of standard error estimators and the asymptotic biases of the estimated vari-
ances of parameter estimators. The latter biases are derived from the asymptotic vari-
ances/covariances and asymptotic biases of the parameter estimators. The formulas
cover the cases for unstandardized and standardized variables. Numerical examples
using factor analysis models show the accuracy of the formulas. The biases of standard
error estimators are theoretically and empirically shown to be of the same order as that
of the differences between the asymptotic standard errors neglecting higher-order terms
and those considering them.

1. Introduction

Standard errors of parameter estimates are often used in structural equation model-
ing. In the familiar programs such as LISREL (Jöreskog & Sörbom, 1996), EQS (Bentler,
1989) and Amos (Arbuckle & Wothke, 1999), the standard errors are available mostly as
asymptotic ones for e.g., maximum likelihood estimators. For exploratory factor analysis
with factor rotation, the standard errors of typical rotated solutions (e.g., the varimax
solution) can be obtained by the programs CEFA (Browne, Cudeck, Tateneni & Mels,
1999), SAS (SAS, 2000) and ROSEF (Ogasawara, 2003) with the assumption of multi-
variate normality for observed variables. The assumption of multivariate normality can
be relaxed without losing the validity of the normal theory standard errors for the models
with asymptotic robustness against the violation of multivariate normality under some
distributional conditions (see, e.g., Satorra, 2002 and the references therein).

The normal theory standard errors, however, have inaccuracy in finite samples even
when the normality assumption or the condition for asymptotic robustness of a model is
satisfied. Because the standard errors are obtained from a lower-order term of an asymp-
totic expansion, they are still approximate ones under the condition when the population
parameters, on which the standard errors usually depend, are available as in experimen-
tal situations. Since in practice the population parameters are not available, they are
estimated, which gives estimated asymptotic standard errors and consequently added in-
accuracy of the standard errors. Ogasawara (2002) gave the general formulas for the
asymptotic standard errors of estimated normal theory standard errors of maximum like-
lihood estimators in exploratory factor analysis and structural equation modeling.
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The asymptotic biases of the estimated normal theory standard errors will be derived
in this article. Using the results we can correct the estimated standard errors, which will
reduce the inaccuracy of standard errors to some extent.

2. Order of the biases of the estimated standard errors

In this section it is shown that the asymptotic biases of the estimated standard errors
are of the same order as that of the added accuracy of the estimated asymptotic standard
errors by considering higher-order terms. Let θi be the i-th element of a q× 1 population
parameter vector θ in a structural equation model and θ̂i be the corresponding estimator
by some method e.g., maximum likelihood. Then, using the Taylor expansion of θ̂i about
θi under the assumption that θ̂i is four-times differentiable, we have

θ̂i = θi +
∂ θ̂i

∂ s′

∣∣∣∣
s=σ

(s− σ) +
1
2
(s− σ)′

∂2 θ̂i

∂ s ∂ s′

∣∣∣∣
s=σ

(s− σ)

+
1
6

∑
a≥b

tr

{
∂3 θ̂i

∂ s ∂ s′∂ sab

∣∣∣∣
s=σ

(s− σ)(s− σ)′
}
(sab − σab) +Op(n−2),

(i = 1, . . . , q), (1)

where σ = v(Σ); s = v(S); Σ = Σ(θ) and S are p × p population and unbiased sample
covariance matrices, respectively; v(·) denotes a p(p+1)/2×1 vector taking nonduplicated
elements of a p × p symmetric matrix (note that s is also used as a variable as well as
an estimate for simplicity of notation); and n+1=N is the number of observations in a
sample. The usual asymptotic standard error of θ̂i is obtained from (1) as

ase(θ̂i) =

√
∂ θi

∂ σ′ acov(s− σ)
∂ θi

∂ σ
= n−1/2

√
∂ θi

∂ σ′Ω
∂ θi

∂ σ
, (2)

where Ω = acov{
√
n(s − σ)} and ∂ θi/∂ σ denotes ∂ θ̂i/∂ s|s=σ for simplicity of nota-

tion (similar notation will be used throughout this article). Since {ase(θ̂i)}2 = O(n−1)

from (2), we write ase(θ̂i) =
√
avar(θ̂i;n−1) when necessary. A more accurate asymptotic

standard error can be obtained using higher-order terms as

E{(θ̂i − θi)2} = n−1 ∂ θi

∂ σ′E{n (s− σ)(s− σ)′}∂ θi

∂ σ

+ E
[
∂ θi

∂ σ′ (s− σ) tr
{

∂2 θi

∂ σ ∂ σ′ (s− σ)(s− σ)′
}

+
1
4

(
tr
{

∂2 θi

∂ σ ∂ σ′ (s− σ)(s− σ)′
})2

+
1
3
∂ θi

∂ σ′ (s− σ)
∑
a≥b

tr
(

∂3 θi

∂ σ ∂ σ′∂ σab
(s− σ)(s− σ)′

)
(sab − σab)


+O(n−3), (i = 1, . . . , q), (3)

where E{n (s− σ)(s− σ)′} should be evaluated up to order O(n−1). The expectation of
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the second term on the right-hand side of (3) is of order O(n−2) because the term is the
expectation of the sum of the cubic and quartic terms of (sab −σab)’s. Denote the asymp-
totic variance from (3) omitting the term of order O(n−3) by avar(θ̂i;n−1, n−2). Then,
the difference of the asymptotic standard errors using avar(θ̂i;n−1, n−2) and avar(θ̂i;n−1)
is √

avar(θ̂i;n−1, n−2)−
√
avar(θ̂i;n−1)

=
avar(θ̂i;n−1, n−2)− avar(θ̂i;n−1)√
avar(θ̂i;n−1, n−2) +

√
avar(θ̂i;n−1)

=
O(n−2)
O(n−1/2)

= O(n−3/2). (4)

Equation (4) holds whether θ̂i is (first-order) bias corrected or not because the squared
bias is of order O(n−2) and we have the remaining terms of the same order in (3).

In practice, the usual asymptotic standard error is available only as a function of θ̂,
which gives an estimator âse(θ̂i). Assume that âse(θ̂i) like θ̂i is a function of only s. Then,√
n times âse(θ̂i) is expanded in a manner similar to (1) as

√
n âse(θ̂i) =

√
n ase(θ̂i) +

∂
√
n ase(θ̂i)
∂ σ′ (s− σ)

+
1
2
(s− σ)′

∂2
√
n ase(θ̂i)

∂ σ ∂ σ′ (s− σ) +Op(n−3/2),

(i = 1, . . . , q). (5)

From (5) the asymptotic bias of âse(θ̂i) is given as

abis{ âse(θ̂i)} = n−1/2 1
2
E

[
tr

{
∂2

√
n ase(θ̂i)

∂ σ ∂ σ′ (s− σ)(s− σ)′
}]

= n−1/2O(n−1) = O(n−3/2),

(i = 1, . . . , q). (6)

The result of (6) is obtained from the assumption that
√
n âse(θ̂i) = Op(1) is an (im-

plicit) function of s or S. From (4) and (6), we find that the two sources of inaccuracy in√
âvar(θ̂i;n−1) i.e.,

E
{√

âvar(θ̂i;n−1)
}
−
√
E{(θ̂i − θi)2}

= E
{√

âvar(θ̂i;n−1)
}
−
√
avar(θ̂i;n−1)

−
{√

E{(θ̂i − θi)2} −
√
avar(θ̂i;n−1)

}
(7)

are of the same order. It is to be noted that this equivalence does not depend on estima-
tion methods or distributional assumptions of S as long as âse(θ̂i) is a function of only
s. In a later section, it will be empirically shown that the absolute value of (6) can be
greater than that of (4) and vice versa depending on parameters in a model.
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3. Asymptotic biases of normal theory standard errors

The asymptotic biases of estimated asymptotic standard errors can be obtained from
(6) when the partial derivatives and the expectation in (6) are available. In this section,
we derive the asymptotic biases of the normal theory standard errors with and without
the assumption of multivariate normality for observed variables.

Let θ̂ be the maximum likelihood estimator which minimizes

F = ln |Σ(θ)|+ tr{Σ(θ)−1S} (8)

with r restrictions h = h(θ) = 0 (r × 1). Then, the usual normal theory asymptotic vari-
ance (i.e., avar(θ̂i) = avar(θ̂i;n−1)) of θ̂i, (i = 1, . . . , q) is given by n avar(θ̂i) = 2(H∗)ii
with

H−1
A =

 E
(

∂2 F

∂ θ ∂ θ′

)
∂ h′

∂ θ
∂ h
∂ θ′ O


−1

=

[
H∗ Hh′

Hh #

]
, (9)

where (·)ij indicates the (i, j)th element of a matrix, (1/2)HA is the augmented informa-
tion matrix per observation with{

E
(

∂2 F

∂ θ ∂ θ′

)}
i j

= tr
{
Σ−1 ∂Σ

∂ θi
Σ−1 ∂Σ

∂ θj

}
, (i, j = 1, . . . , q), (10)

(see e.g., Jennrich, 1974), Σ−1 = Σ(θ)−1 and the hash mark denotes a submatrix of H−1
A

which will not be used. Using the above notation, we have
Lemma 1. The asymptotic biases of estimated normal theory asymptotic variances of

the maximum likelihood estimators θ̂ are given by

abis{âvar(θ̂i)} = n−1

q∑
k=1

[
q∑

l=1

(
2H−1

A

∂HA

∂ θk
H−1

A

∂HA

∂ θl
H−1

A

− H−1
A

∂2HA

∂θk∂θl
H−1

A

)
i i

acov(θ̂k, θ̂l)−
(
2H−1

A

∂HA

∂ θk
H−1

A

)
i i

abis(θ̂k)
]
,

(i = 1, . . . , q). (11)

Proof. Consider the expansion of n âvar(θ̂i) similar to (5), which yields

abis{n âvar(θ̂i)}=
n−1

2
tr

{
∂2n avar(θ̂i)

∂σ∂σ′ Ω

}
=
n−1

2
tr
{
∂22(H∗)ii
∂σ∂σ′ Ω

}
= n−1

∑
a≥b

∑
c≥d

[
∂

(
−H−1

A

∂HA

∂σab
H−1

A

)
ii

/
∂σcd

]
(Ω)ab,cd

= n−1
∑
a≥b

∑
c≥d

(
2H−1

A

∂HA

∂σab
H−1

A

∂HA

∂σcd
H−1

A −H−1
A

∂2HA

∂σab∂σcd
H−1

A

)
ii

(Ω)ab,cd

= n−1
∑
a≥b

∑
c≥d

[
2H−1

A

q∑
k=1

∂HA

∂θk

∂θk

∂σab
H−1

A

q∑
l=1

∂HA

∂θl

∂θl

∂σcd
H−1

A
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−H−1
A

q∑
k=1

(
q∑

l=1

{
∂2HA

∂θk∂θl

∂θk

∂σab

∂θl

∂σcd

}
+
∂HA

∂θk

∂2θk

∂σab∂σcd

)
H−1

A

]
ii

(Ω)ab,cd

= n−1

q∑
k=1

[
q∑

l=1

{(
2H−1

A

∂HA

∂θk
H−1

A

∂HA

∂θl
H−1

A −H−1
A

∂2HA

∂θk∂θl
H−1

A

)
ii

×
∑
a≥b

∑
c≥d

∂θk

∂σab

∂θl

∂σcd
(Ω)ab,cd


−2
(
H−1

A

∂HA

∂θk
H−1

A

)
ii

1
2

∑
a≥b

∑
c≥d

∂2θk

∂σab∂σcd
(Ω)ab,cd

 , (12)

which gives (11). Q.E.D.
In (11) the first and second partial derivatives with respect to the parameters are given

as follows: (
∂HA

∂ θk

)
ij

= tr
{
−2Σ−1 ∂Σ

∂ θi
Σ−1 ∂Σ

∂ θj
Σ−1 ∂Σ

∂ θk

+Σ−1 ∂2Σ
∂ θi∂ θk

Σ−1 ∂Σ
∂ θj

+Σ−1 ∂Σ
∂ θi

Σ−1 ∂2Σ
∂ θj∂ θk

}
,

(i, j, k = 1, . . . , q), (13a)

(
∂HA

∂ θk

)
q+i,j

=
(
∂HA

∂ θk

)
j,q+i

=
∂2h i

∂ θj∂ θk
,

(i = 1, . . . , r; j, k = 1, . . . , q), (13b)

where h i = h i(θ) is the i-th element of h(θ),(
∂2HA

∂ θk∂ θl

)
ij

= tr
{
2Σ−1 ∂Σ

∂ θi
Σ−1 ∂Σ

∂ θj
Σ−1 ∂Σ

∂ θk
Σ−1 ∂Σ

∂ θl

+2Σ−1 ∂Σ
∂ θi

Σ−1 ∂Σ
∂ θl

Σ−1 ∂Σ
∂ θj

Σ−1 ∂Σ
∂ θk

+2Σ−1 ∂Σ
∂ θi

Σ−1 ∂Σ
∂ θj

Σ−1 ∂Σ
∂ θl

Σ−1 ∂Σ
∂ θk

−2Σ−1 ∂2Σ
∂ θi∂ θl

Σ−1 ∂Σ
∂ θj

Σ−1 ∂Σ
∂ θk

−2Σ−1 ∂Σ
∂ θi

Σ−1 ∂2Σ
∂ θj∂ θl

Σ−1 ∂Σ
∂ θk

− 2Σ−1 ∂Σ
∂ θi

Σ−1 ∂Σ
∂ θj

Σ−1 ∂2Σ
∂ θk∂ θl

−2Σ−1 ∂Σ
∂ θl

Σ−1 ∂2Σ
∂ θi∂ θk

Σ−1 ∂Σ
∂ θj

− 2Σ−1 ∂Σ
∂ θl

Σ−1 ∂Σ
∂ θi

Σ−1 ∂2Σ
∂ θj∂ θk

+Σ−1 ∂2Σ
∂ θi∂ θk

Σ−1 ∂2Σ
∂ θj∂ θl

+Σ−1 ∂2Σ
∂ θi∂ θl

Σ−1 ∂2Σ
∂ θj∂ θk

+Σ−1 ∂3Σ
∂ θi∂ θk∂ θl

Σ−1 ∂Σ
∂ θj

+Σ−1 ∂Σ
∂ θi

Σ−1 ∂3Σ
∂ θj∂ θk∂ θl

}
,

(i, j, k, l = 1, . . . , q) (13c)
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and (
∂2HA

∂ θk∂ θl

)
q+i,j

=
(

∂2HA

∂ θk∂ θl

)
j,q+i

=
∂3 h i

∂ θj∂ θk∂ θl
,

(i = 1, . . . , r; j, k, l = 1, . . . , q). (13d)

In (13a) and (13c), the partial derivatives of Σ with respect to the parameters are easily
obtained because usually Σ(θ) is an explicit function of θ. The second derivatives vanish
for linear models of Σ in terms of θ. For exploratory factor analysis, the third derivatives
in (13c) vanish for the model with fixed variances-covariances of common factors as the
usual orthogonal factor model. The results of (13b) and (13d) depend on the restrictions
h(θ) = 0 employed. One of the remaining factors to be evaluated in (11) is

n acov(θ̂k, θ̂l) =
∑
a≥b

∑
c≥d

∂ θk

∂ σab

∂ θl

∂ σcd
(Ω)ab,cd =

∂ θk

∂ σ′Ω
∂ θl

∂ σ
,

(k, l = 1, . . . , q). (14)

For nonnormal distributions, (14) is given from the partial derivatives in implicit functions

∂ θ

∂ σ′ = −H∗ ∂ gs

∂ s′

∣∣∣∣
s=σ

and (Ω)ab,cd = σabcd − σabσcd (15)

with σabcd being the fourth-order central moment of the (a, b, c, d)th variables. In (15),
gs is the gradient vector with

(gs)i· =
∂ F

∂ θ̂i

= tr

{
Σ̂

−1
(Σ̂− S)Σ̂

−1 ∂ Σ̂

∂ θ̂i

}
, (i = 1, . . . , q), (16)

where Σ̂ = Σ(θ̂) and (·)i· is the i-th element (row) of a vector (matrix) and the subscript
s in gs denotes that the subscripted term is regarded as a function of s or S explicitly
involved in gs while θ̂ is temporarily regarded as a constant. That is,(

∂ gs

∂ s′

)
i·
= −

(
vec

(
Σ̂

−1 ∂ Σ̂

∂ θ̂i

Σ̂
−1

))′

Dp = −∂ (vecΣ̂)′

∂ θ̂i

(Σ̂
−1 ⊗ Σ̂

−1
)Dp, (17)

where vecX = vec(X) is a vectorizing operator stacking the columns of a matrix X; Dp

is the duplication matrix for a p × p symmetric matrix with vec(S) = Dpv(S); and ⊗
denotes the right Kronecker product.

From (15) and (17), we have

∂ θ

∂ σ′ = H∗ ∂ (vecΣ)′

∂ θ
(Σ−1 ⊗Σ−1)Dp. (18)

For normal data, (14) becomes simply, as was shown before,

n acov(θ̂) = 2H∗. (19)

The remaining factor abis(θ̂i) to be evaluated in (11) is obtained from Theorems 1 and 2
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of Ogasawara (2004) for nonnormal and normal data, respectively. That is, for nonnormal
data,

abis(θ̂i) = −n−1

2

∑
a≥b

∑
c≥d

q∑
j=1

q∑
k=1

(2− δcd)

{(
H−1

A

∂HA

∂ θk
H−1

A

)
ij

(
Σ−1 ∂Σ

∂ θj
Σ−1

)
cd

+ (H∗)ij

(
Σ−1 ∂Σ

∂ θk
Σ−1 ∂Σ

∂ θj
Σ−1 −Σ−1 ∂2Σ

∂ θj∂ θk
Σ−1

+ Σ−1 ∂Σ
∂ θj

Σ−1 ∂Σ
∂ θk

Σ−1

)
cd

}
∂ θk

∂ σab
(σabcd − σabσcd), (i = 1, . . . , q), (20)

where δcd is the Kronecker delta, and for normal data

abis(θ̂i) = −n−1

q∑
k=1

H−1
A


{
tr
(
Σ−1 ∂Σ

∂ θu
Σ−1 ∂2Σ

∂ θk∂ θv

)}
(u,v)th

∂2 h
∂ θ′ ∂ θk

H∗


i k

,

(i = 1, . . . , q), (21)

where {·}(u,v)th is the q × q matrix whose (u, v)th element is given by the expression in
braces. The special cases of (21) for the estimators of the variances of unique factors in
exploratory factor analysis have also been given by Ihara (1985) when p = 3 and Ichikawa
and Konishi (2002) for general p’s.

The asymptotic biases of estimated standard errors âse(θ̂i) =
√
âvar(θ̂i;n−1) are given

by the following theorem with Lemma 1 for abis{n âvar(θ̂i)}.
Theorem 1. The asymptotic biases of estimated normal theory standard errors of

maximum likelihood estimators θ̂i, (i = 1, . . . , q) are

abis{
√
n âse(θ̂i)} =

1

2
√
n ase(θ̂i)

[
−avar{

√
n âse(θ̂i)}+ abis{n âvar(θ̂i)}

]
,

(i = 1, . . . , q). (22)

Proof 1.

abis{
√
n âse(θ̂i)} =

n−1

2
tr

∂2

√
n avar(θ̂i)

∂ σ ∂ σ′ Ω


=

n−1

2
tr

{[
∂

∂ σ

(
{n avar(θ̂i)}−1/2

2
∂ n avar(θ̂i)

∂ σ ′

)]
Ω

}

=
n−1

2
tr

{[
−{n avar(θ̂i)}−3/2

4
∂ n avar(θ̂i)

∂ σ

∂ n avar(θ̂i)
∂ σ′

+
{n avar(θ̂i)}−1/2

2
∂2 n avar(θ̂i)
∂ σ ∂ σ′

]
Ω

}

= −{n avar(θ̂i)}−3/2

8
avar{n âvar(θ̂i)}+

{n avar(θ̂i)}−1/2

2
abis{n âvar(θ̂i)},

(i = 1, . . . , q). (23)
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which yields (22). Q. E. D.
Proof 2. Let u i and v i be the linear and quadratic terms of s−σ in the Taylor expan-

sion of
√
n âse(θ̂i), respectively. Then, omitting higher-order terms when necessary, we

have

n âvar(θ̂i) = {
√
n âse(θ̂i)}2 = {

√
n ase(θ̂i) + u i + v i}2

= n avar(θ̂i) + 2
√
n ase(θ̂i)u i + u2

i + 2
√
n ase(θ̂i)v i, (i = 1, . . . , q). (24)

Taking the expectation of (24) with respect to the distribution of s in large samples,

n avar(θ̂i) + abis{n âvar(θ̂i)}
= n avar(θ̂i) + avar{

√
n âse(θ̂i)}+ 2

√
n ase(θ̂i) abis{

√
n âse(θ̂i)},

(i = 1, . . . , q), (25)

which gives (22). Q. E. D.
The above result is also given by taking the terms of order O(n−1) in both sides of the

following exact equation:

E(ĝ − g) =
1
2g

[−E{(ĝ − g)2}+ E(ĝ2)− g2], (26)

where g = g(θ) is any function of θ with ĝ = g(θ̂) (the author is indebted to a reviewer
for this point).

In (22) avar{
√
n âse(θ̂i)} was derived by Ogasawara (2002) for normal data. In our

case, however, avar{n âvar(θ̂i)} in (23) is slightly more convenient for evaluation of
abis{

√
n âse(θ̂i)} than avar{

√
n âse(θ̂i)} in (22). That is,

n avar{n âvar(θ̂i)} =
∂ 2(H∗)ii

∂ σ′ Ω
∂ 2(H∗)ii

∂ σ
, (i = 1, . . . , q), (27)

where

∂ (H∗)ii
∂ σ′ =

∂ (H∗)ii
∂ θ′

∂ θ

∂ σ′

= −
q∑

k=1

(
H−1

A

∂HA

∂ θk
H−1

A

)
ii

(H∗)k·
∂ (vecΣ)′

∂ θ
(Σ−1 ⊗Σ−1)Dp. (28)

In (28), ∂HA/∂θk is available from (13a) and (13b). Equation (27) holds for nonnormal
data as well as normal ones, which is a slight generalization of Ogasawara (2002). For
normal data, as was derived by Ogasawara (2002), (27) becomes simply

n avar{n âvar(θ̂i)} = 8
∂ (H∗)ii
∂ θ′ H∗ ∂ (H

∗)ii
∂ θ

, (i = 1, . . . , q). (29)

4. Asymptotic biases of the estimated standard errors for models of
standardized observed variables

In the behavioral sciences observed variables are frequently standardized. That is,
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sample correlation matrices are often used instead of sample covariance matrices. In
exploratory factor analysis, it is known that the estimator θ̂ which minimizes (8) with
identification restrictions , when S is replaced by the corresponding sample correlation
matrix R, is still a maximum likelihood estimator with the covariance structure model:

Σ(θ) = DP(θρ)D, D = diag(d1, . . . , dp) and Diag{P(θρ)} = I(p), (30)

where diag(·) is the diagonal matrix whose diagonal elements are given in parentheses,
Diag(·) is the diagonal matrix whose diagonal elements are those of the argument matrix,
and I(p) is the p× p identity matrix. The parameter vector θ = (d1, . . . , dp,θ

′
ρ)′ includes

the nuisance parameters d1, . . . , dp the standard deviations of the observed variables, and
the parameters θρ(q × 1) of interest in the correlation structure P(θρ). The results in
the previous section hold for the models of (30) when we consider the nuisance parame-
ters and associated partial derivatives. That is, the matrix HA should be expanded to a
(p+ q + r + p)× (p+ q + r + p) matrix, where the increase of the size by 2p comes from
the added p nuisance parameters and the additional p restrictions in (30) on P(θρ).

Let the expanded HA be partitioned with submatrices for the expected second deriva-
tives of F with respect to θ followed by those of the restrictions h(θ) = 0 and
[{P(θρ)}11 − 1, . . . , {P(θρ)}p p − 1]′ = 0 in this order. Then, fortunately, it is known
that the diagonal elements of H−1

A associated with the asymptotic variances of θ̂ρ, i.e.,
(H−1

A )ii, (i = p+1, . . . , p+q) do not depend on the values of d1, . . . , dp (see Yuan & Bentler,
2000 and Ogasawara, 2002) though θ̂ρ is correlated with d̂1, . . . , d̂p. Consequently, we can
simplify the result of Lemma 1 as follows.
Lemma 2. For the model of (30) for standardized variables, the asymptotic biases of

the estimated variances of the maximum likelihood estimators in a correlation structure
are given by

abis{âvar(θ̂ρi)}

= n−1

q∑
k=1

[
q∑

l=1

(
2H−1

A

∂HA

∂θρk
H−1

A

∂HA

∂θρl
H−1

A

−H−1
A

∂2HA

∂θρk∂θρl
H−1

A

)
p+i, p+i

acov(θ̂ρk, θ̂ρl)−
(
2H−1

A

∂HA

∂θρk
H−1

A

)
p+i, p+i

abis(θ̂ρk)

]
,

(i = 1, . . . , q), (31)

where θρ i = (θρ)i· and HA is the (2p+ q+ r)× (2p+ q+ r) augmented matrix of expected
second derivatives.

Proof. The proof will be given in Appendix.
When we use Lemma 2, the following additional partial derivatives of the submatrices in

HA for the nuisance parameters d1, . . . , dp are required. The first group is for the subma-
trix for E(∂2F/∂ d∂ d′) (note that F corresponds to (8) not (A1)), where d = (d1, . . . , dp)′:

didj

(
∂HA

∂ θρk

)
ij

=
∂ 2(ρijρij + δij)

∂ θρk
= −2

(
P−1 ∂P

∂ θρk
P−1

)
ij

ρij + 2ρij ∂ ρij

∂ θρk
,
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(i, j = 1, . . . , p; k = 1, . . . , q), (32)

where ρij = (P−1)ij , P−1 = P(θρ)−1 and δij is the Kronecker delta;

didj

(
∂2HA

∂θρk∂θρl

)
ij

= 2
(
P−1 ∂P

∂θρl
P−1 ∂P

∂θρk
P−1 +P−1 ∂P

∂θρk
P−1 ∂P

∂θρl
P−1

−P−1 ∂2P
∂θρk∂θρl

P−1

)
ij

ρij − 2
(
P−1 ∂P

∂θρk
P−1

)
ij

∂ ρij

∂θρl

− 2
(
P−1 ∂P

∂θρl
P−1

)
ij

∂ ρij

∂θρk
+ 2ρij ∂2 ρij

∂θρk∂θρl
,

(i, j = 1, . . . , p; k, l = 1, . . . , q). (33)

The second group is for the submatrix E(∂2F/∂ θρ∂ d′) and its transpose:

dj

(
∂HA

∂ θρk

)
p+i,j

= dj

(
∂HA

∂ θρk

)
j,p+i

=
∂ 2(P−1∂P/∂θρi)jj

∂ θρk

= 2
(
−P−1 ∂P

∂ θρk
P−1 ∂P

∂ θρ i
+P−1 ∂2P

∂ θρ i∂ θρk

)
jj

,

(i, k = 1, . . . , q; j = 1, . . . , p), (34)

dj

(
∂2HA

∂ θρk∂ θρl

)
p+i,j

= dj

(
∂2HA

∂ θρk∂ θρl

)
j,p+i

= 2
(
P−1 ∂P

∂ θρl
P−1 ∂P

∂ θρk
P−1 ∂P

∂ θρ i
+P−1 ∂P

∂ θρk
P−1 ∂P

∂ θρl
P−1 ∂P

∂ θρ i

−P−1 ∂2P
∂ θρ k∂ θρl

P−1 ∂P
∂ θρ i

−P−1 ∂P
∂ θρ k

P−1 ∂2P
∂ θρ i∂ θρl

−P−1 ∂P
∂ θρ l

P−1 ∂2P
∂ θρ i∂ θρk

+P−1 ∂3P
∂ θρ i∂ θρ k∂ θρl

)
jj

,

(i, k, l = 1, . . . , q; j = 1, . . . , p). (35)

Note that d i and dj in (32)–(35) can be set to one without loss of generality after taking
the partial derivatives.

The third group is for the restrictions Diag{P(θρ)} = I(p),:(
∂HA

∂ θρk

)
p+q+r+i,p+j

=
(
∂HA

∂ θρk

)
p+j,p+q+r+i

=
∂ {∂(ρii − 1)/∂θρj}

∂ θρk
=

∂ 2ρii

∂θρj∂ θρk
,

(i = 1, . . . , p; j, k = 1, . . . , q), (36)

(
∂ 2HA

∂ θρk∂ θρl

)
p+q+r+i,p+j

=
(

∂ 2HA

∂ θρk∂ θρl

)
p+j,p+q+r+i

=
∂ 3ρii

∂θρj∂ θρk∂ θρl
,

(i = 1, . . . , p; j, k, l = 1, . . . , q). (37)

Note that
(

∂ HA

∂ θρk

)
p+i,p+j

, (i, j = 1, . . . , q + r; k = 1, . . . , q) are obtained from (13a)–

(13d) by replacing Σ(θ) with P(θρ) because
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(HA)p+i,p+j = tr
(
Σ−1 ∂Σ

∂ θρ i
Σ−1 ∂Σ

∂ θρ j

)
= tr

(
P−1 ∂P

∂ θρ i
P−1 ∂P

∂ θρ j

)
,

(i, j = 1, . . . , q), (38)

when Σ = DP(θρ)D.

5. The raw orthomax solution

As an example in exploratory factor analysis, the case of the raw orthomax solution
with m common factors for unstandardized/standardized observed variables is presented.
The covariance structure model for unstandardized variables is written by

Σ = ΛΛ′ +Ψ, (39)

where Λ is a p ×m loading matrix and Ψ is a covariance matrix of uncorrelated unique
factors. For the correlation structure model, Σ in (39) should be replaced by P. The
partial derivatives ∂Σ/∂ θ, ∂2Σ/∂ θ ∂ θ′ in (13a), (13c), and ∂P/∂ θρ, ∂

2P/∂ θρ ∂ θ′
ρ in

(32)–(36) and (38) are easily obtained (note that the third derivatives in (35) and (37)
vanish).

The partial derivatives in (13b) and (13d) of the identification restrictions for the raw
orthomax solution are given as follows. The restrictions were given by Archer and Jennrich
(1973) as (

Λ′ ∂ f

∂Λ
− ∂ f

∂Λ′Λ
)

st

= 0, (1 ≤ s < t ≤ m) (40)

with f = 1
4

m∑
j=1

{
p

p∑
i=1

λ4
ij − w

(
p∑

i=1

λ2
ij

)2
}
, λ ij = (Λ)ij , and w being the orthomax

weight. The first derivatives of (40) with respect to λ ij , (i = 1, . . . , p; j = 1, . . . ,m)
were also given by Archer and Jennrich (1973). For the second derivatives, see Ogasawara
(2002). The third derivatives required in (13d) (note that h i, (i = 1, . . . , (m2 −m)/2) in
(8) correspond to (40)) are given as follows:

∂3

(
Λ′ ∂ f

∂Λ
− ∂ f

∂Λ′Λ
)

st

/
∂λab∂λcd∂λef

= (δsbδtdδtf + δtbδsdδtf + δtbδtdδsf )
∂3f

∂λat∂λct∂λet

+ δtbδtdδtf

(
Λ′ ∂4f

∂Λ ∂λat∂λct∂λet

)
st

− (δtbδsdδsf + δsbδtdδsf + δsbδsdδtf )
∂3f

∂λas∂λcs∂λes

− δsbδsdδsf

(
Λ′ ∂4f

∂Λ ∂λas∂λcs∂λes

)
ts

,

(1 ≤ s < t ≤ m; a, c, e = 1, . . . , p; b, d, f = 1, . . . ,m), (41)

where
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∂3f

∂λat∂λct∂λet
= ∂

(
∂{pλ3

at − w(
∑p

i=1 λ
2
it)λat}

∂λct

)/
∂λet

= ∂{3δacpλ
2
at − w(2λctλat + δac

∑p

i=1
λ2

it)}/∂λet

= 6δacδaepλat − 2w(δceλat + δaeλct + δacλet) (42)

and

∂4f

∂λat∂λct∂λet∂λgt
= 6δacδaeδagp− 2w(δceδga + δaeδgc + δacδge),

(1 ≤ s < t ≤ m; a, c, e, g = 1, . . . , p). (43)

In practice, the normal orthomax solution (i.e., the orthomax solution with row or
Kaiser’s normalization) is often used. However, the partial derivatives corresponding to
the above results become involved and are not pursued here (for the first derivatives, see
Ogasawara, 2000 and Yuan & Bentler, 2000).

6. Numerical examples with simulations

Three numerical examples in exploratory factor analysis under normality are presented
in the first half of this section, and an example in confirmatory factor analysis in the
second section. The first example is an artificial one. The second and third examples are
based on real data. The first example employs a one-factor model with equal population
loadings and unique variances for six observed variables as

Σ = λλ′ +Ψ (44)

with λ = (.6, .6, .6, .6, .6, .6)′ and Ψ = diag(.64, .64, .64, .64, .64, .64). When the model
for standardized variables is used, Σ in (44) is replaced by P with D = I(6) in the popu-
lation.

The results are shown in Table 1, where the standard errors (SEs), the standard errors
of estimated standard errors (SEs of SE), and the biases of estimated standard errors (SE
biases) are given. These values have each theoretical and simulated ones. The theoreti-
cal values are asymptotic ones using the population parameters with the assumption of
N = 300 while the simulated values have been given in the following way. First, inde-
pendent observations of N = 300 following the multivariate normal distribution with (44)
were randomly generated. From these observations, sample covariance/correlation matri-
ces were calculated followed by estimation of the parameters in the model by maximum
likelihood. The Heywood case, if any, was removed. The model has a minor indetermi-
nacy of the sign of the single common factor, which was removed by reversing the sign
when the sum of the loading estimates was negative. This procedure was replicated until
regular 1,000,000 sets of estimates were obtained. No Heywood case had occurred until
the required number of replications was obtained. The simulated SEs were given from
the square roots of the usual unbiased sample variances of the 1,000,000 estimates for
each parameter. The simulated SEs of SE are the simulated SEs of estimated asymptotic
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Table 1: SE biases of the one-factor model under normality (N = 300; Number of replications
= 1, 000, 000)

Population A A′ B B′ C C′

parameter SE ×105 SE of SE ×105 SE bias ×106

value Th. Sim. Th. Sim. Th. Sim.

Unstandardized variables

Ψ 1 .64 6303 6318 496 496 −327 −328
2 .64 6303 6323 496 496 −327 −318

(A− Ā′)/Ā′ 3 .64 6303 6314 496 495 −327 −324
= −.0026 4 .64 6303 6325 496 496 −327 −333

C/A = −.0052 5 .64 6303 6317 496 496 −327 −317
C/B = −.066 6 .64 6303 6320 496 496 −327 −319

λ 1 .6 5999 6024 238 238 −206 −209
2 .6 5999 6027 238 238 −206 −204

(A− Ā′)/Ā′ 3 .6 5999 6024 238 238 −206 −207
= −.0041 4 .6 5999 6019 238 238 −206 −211

C/A = −.0034 5 .6 5999 6025 238 238 −206 −203
C/B = −.087 6 .6 5999 6020 238 238 −206 −204

Standardized variables

Ψ 1 .64 5662 5674 157 172 −599 −604
2 .64 5662 5676 157 172 −599 −604

(A− Ā′)/Ā′ 3 .64 5662 5672 157 172 −599 −605
= −.0021 4 .64 5662 5677 157 172 −599 −604

C/A = −.011 5 .64 5662 5672 157 172 −599 −601
C/B = −.38 6 .64 5662 5669 157 172 −599 −601

λ 1 .6 4718 4761 352 350 −196 −194
2 .6 4718 4764 352 350 −196 −194

(A− Ā′)/Ā′ 3 .6 4718 4761 352 350 −196 −190
= −.0089 4 .6 4718 4763 352 351 −196 −195

C/A = −.0042 5 .6 4718 4760 352 350 −196 −198
C/B = −.056 6 .6 4718 4757 352 350 −196 −197

Note. SE = standard error, Th. = theoretical (asymptotic) values,
Sim. = simulated values.

standard errors using parameter estimates. The simulated SE biases are the means of the
SE estimates minus their corresponding true values.

In Table 1, the simulated values are fairly unchanged over the six variables with the
same population values, which satisfies a condition when the values are used as true values
for this model. The theoretical SE biases are all negative and close to their corresponding
simulated values showing the accuracy of the formulas in this article. The theoretical
SEs (column A) are slightly but consistently smaller than the simulated or true SEs (col-
umn A′). The amount of the relative difference is given as the index (A − Ā′)/Ā′ in
the table where Ā′ denotes an average of A′ over the six observed variables. The index
shows inaccuracy when neglecting higher-order terms. The corresponding index for SE
biases is C/A (theoretical SE bias/theoretical SE). We find that the absolute value of
C/A (−.011) in Ψ for standardized variables is much larger than the corresponding value
of (A − Ā′)/Ā′ (−.0021), which shows that SE biases should not be neglected when we
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Table 2: SE biases of the raw varimax solutions of Emmett’s (1949) data under normality
(N = 211; Number of replications = 1,000,000)

Unstandardized variables Standardized variables
SE SE of SE SE bias SE SE of SE SE bias

Parameter ×103 ×104 ×105 ×103 ×104 ×105

value Th. Th. Th. Sim. Th. Th. Th. Sim.

1 .46 52 50 −59 −59 53 31 −58 −59
2 .46 51 49 −56 −57 53 30 −53 −55
3 .67 70 67 −73 −75 59 15 −69 −69
4 .19 38 39 −30 −29 41 46 −10 −10

Ψ 5 .41 48 45 −37 −37 51 36 −36 −37
6 .22 42 43 −36 −36 45 49 −19 −18
7 .40 50 46 −63 −64 53 37 −61 −63
8 .74 76 74 −76 −77 57 27 −56 −57
9 .22 41 38 −65 −64 44 46 −47 −47

1 .32 59 29 −30 −30 53 23 −30 −32
2 .38 61 30 −31 −32 53 23 −36 −37
3 .20 64 29 −45 −46 62 26 −49 −51
4 .85 59 26 −10 −10 29 33 5 5

I 5 .74 62 27 −9 −9 36 37 1 2
6 .85 60 25 −12 −12 29 33 −1 −1
7 .27 56 28 −24 −24 51 24 −19 −20
8 .18 67 31 −49 −50 65 25 −58 −59
9 .32 52 31 −12 −12 44 22 −3 −4

1 .66 64 30 −23 −24 44 40 −17 −18
2 .63 64 32 −23 −24 45 38 −19 −22
3 .54 68 32 −35 −37 54 42 −36 −38
4 .29 45 29 37 37 37 23 22 22

II 5 .21 50 27 10 12 46 29 3 4
6 .23 43 28 37 38 38 24 19 20
7 .73 63 29 −22 −23 39 40 −15 −16
8 .47 70 33 −40 −41 59 40 −44 −46
9 .82 60 28 −17 −18 32 37 −4 −5

Note. SE = standard error, Th. = theoretical (asymptotic) values, Sim. =
simulated values, I = loadings of Factor I, II = loadings of Factor II.

consider asymptotic standard errors with higher-order terms. The table includes the index
C/B (theoretical SE bias/theoretical SE of SE), which shows the relative size of the SE
bias compared to the stability of the SE estimate. While the absolute values of (A−Ā′)/Ā′

and C/A are mostly less than 1% in the table, the largest absolute value of C/B is as
large as 38% in this example.

Tables 2 and 3 show the results of the raw varimax solutions based on real data with
simulations by the method similar to that in Table 1. Table 2 is given from the correla-
tion matrix of Emmett’s (1949, p. 90) nine variables (N = 211; the correlation coefficients
rounded to three decimal places by Lawley & Maxwell, 1971, p. 43 were used) while Table
3 is for Harman’s (1976, p. 22) eight physical variables (N = 305). In both data sets, two
common factors are assumed. The population covariance matrices were given by the fitted
correlation matrices. The sample sizes in the simulation were set equal to the real ones in
each data set. The numbers of Heywood cases until regular 1,000,000 replications in the
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Table 3: SE biases of the raw varimax solutions of Harman’s (1976) eight physical variables under
normality (N = 305; Number of replications = 1,000,000)

Unstandardized variables Standardized variables
SE SE of SE SE bias SE SE of SE SE bias

Parameter ×103 ×104 ×105 ×103 ×104 ×105

value Th. Th. Th. Sim. Th. Th. Th. Sim.

1 .17 18 14 −14 −14 21 20 −8 −8
2 .11 15 11 −14 −13 17 18 −6 −6
3 .17 18 14 −15 −15 21 20 −8 −8

Ψ 4 .20 20 16 −16 −16 23 22 −9 −9
5 .09 29 23 −24 −24 30 30 −5 −5
6 .36 36 27 −27 −27 39 25 −25 −25
7 .42 40 30 −30 −30 42 23 −29 −29
8 .54 46 37 −33 −32 45 14 −32 −32

1 .87 44 16 −6 −5 14 13 1 1
2 .93 43 16 −5 −5 10 10 1 1
3 .90 44 16 −6 −6 12 12 1 1

I 4 .86 45 16 −6 −6 15 14 1 1
5 .25 36 15 −7 −7 32 11 −4 −4
6 .21 42 14 −11 −11 39 14 −8 −8
7 .15 43 14 −12 −12 41 15 −9 −10
8 .29 48 17 −14 −14 44 17 −13 −14

1 .27 35 13 −2 −2 30 11 −3 −3
2 .16 31 12 1 1 29 9 −3 −3
3 .16 33 12 −1 −1 31 11 −4 −4

II 4 .23 35 13 −3 −3 32 12 −4 −4
5 .92 45 16 −7 −7 19 18 2 3
6 .77 49 17 −10 −10 26 22 −3 −4
7 .75 50 17 −11 −11 28 24 −4 −5
8 .61 52 19 −13 −13 36 25 −10 −10

Note. SE = standard error, Th. = theoretical (asymptotic) values, Sim. =
simulated values, I = loadings of Factor I, II = loadings of Factor II.

simulation were obtained are 28 and 2,146 in Tables 2 and 3, respectively (the same set of
generated sample covariance matrices was used both for unstandardized and standardized
variables while for standardized variables the covariance matrices were transformed to
sample correlation matrices). The theoretical biases in Tables 2 and 3 are close to their
corresponding simulated values. The SE biases in Ψ are all negative, as was shown in
Table 1. The SE biases in standardized variables are, as a whole, somewhat smaller than
those in unstandardized variables in these data. The absolute values of the SE biases for
Ψ in Table 2 (approximately 1% of their corresponding SEs on average) are greater than
the corresponding values in Table 3. This can be partially explained by the difference of
sample size.

Table 4 shows the results of an artificial example in confirmatory factor analy-
sis with two common factors for six unstandardized observed variables using nor-
mally/nonnormally distributed data with N = 300. The population covariance matrix
was constructed as follows:

Σ = ΛΦΛ′ +Ψ,
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Table 4: Results of the confirmatory factor analysis model for unstandardized variables (N = 300;
Number of replications = 1,000,000)

Simulated SE bias
Thoretical Theoretical Theoretical Nonnormal (df)
SE SE of SE SE bias Normal (10) (3) (1)

ψ1 1.1 .09 −.0032 −.0031 −.0026 −.0032 −.0038
ψ2 1.9 .17 .0057 .0076 .0065 .0038 −.0032
ψ3 3.6 .47 .0388 .0440 .0425 .0340 .0102
ψ4 1.4 .11 −.0036 −.0036 −.0031 −.0040 −.0051
ψ5 2.3 .20 .0028 .0040 .0027 −.0016 −.0128
ψ6 3.1 .29 .0101 .0125 .0103 .0023 −.0168

φ11 .15 .014 .00067 .00079 .00083 .00073 .00049
φ21 .08 .007 −.00035 −.00035 −.00038 −.00048 −.00075
φ22 .14 .012 .00008 .00014 .00008 −.00006 −.00044

λ11 .27 .026 .0010 .0012 .0017 .0029 .0063
λ21 .44 .060 .0049 .0057 .0065 .0092 .0164
λ42 .32 .031 .0017 .0017 .0022 .0029 .0051
λ52 .47 .059 .0046 .0049 .0054 .0063 .0092

Note. SE = standard error.

Λ =

[
2 4 6∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 3 5 6∗

]′
, Φ =

[
1 .4

.4 1

]
, Ψ = diag(12, 13, 14, 15, 16, 17), (45)

where the population values with asterisks were used as fixed parameters in estimation
while the remaining values were estimated as free parameters. Note that the unit popula-
tion variances of the two common factors are free parameters in estimation, which satisfies
the condition of a model with asymptotic robustness against the violation of multivariate
normality for observed variables. Observations were randomly generated with or without
normality for factors. Nonnormal cases were generated by using independently chi-square
distributed variables with affine transformation to have zero means and unit variances
for the first common factor and the six unique factors with df = 10, 3 and 1 while the
second common factor was generated as a weighted sum of two independently chi-square
distributed variables and a constant to have the required covariance of the two common
factors and the unit variance of the second factor. The degrees of freedom 10, 3 and 1
represent moderate, substantial and strong nonnormality, respectively. The numbers of
Heywood cases until regular 1,000,000 replications were obtained are 1,000, 1,042, 1,233
and 1,782 for normal and nonnormal data with df = 10, 3 and 1, respectively.

Table 4 shows that when data are normally distributed or nonnormality is modest, the
theoretical SE biases are fairly close to their corresponding simulated values. However,
when nonnormality is strong, the theoretical SE biases become different from their corre-
sponding simulated ones. (It is to be noted that the theoretical SE biases for nonnormal
data can be derived, if necessary, by our formulas when the fourth-order central moments
of sample covariances are available.) This shows that the SE biases do not have asymp-
totic robustness which is enjoyed by the asymptotic SEs of the loading estimates in this
example (this robustness was empirically confirmed though not shown in the table). It is
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of interest to find that the absolute values of the simulated SE biases in nonnormal cases
are not necessarily larger than the corresponding theoretical or simulated SE biases with
normality assumption. It is also of interest to see that some of the theoretical SE biases
in Ψ are positive, which is different from those in Tables 1–3.

7. Conclusive remarks

From the results of the numerical examples with moderate sample sizes, we see that the
asymptotic biases of estimated standard errors are fairly small such as 1% of the corre-
sponding asymptotic standard error. However, note that the sample sizes were employed
to have stable simulated values as true values and that the relative size is of order O(n−1).
That is, when the sample size is reduced to a quarter of the original size, the relative size
of the asymptotic bias of the estimated standard error becomes 4%, which may not be
neglected.

In factor analysis, it is difficult to have stable simulated results with small sample sizes
e.g., N = 50 and 100 due to anomalous cases such as non-convergence. In exploratory
factor analysis, we have an additional problem of indeterminacy of the orders and signs of
the columns of a rotated loading matrix. For the numerical examples with raw varimax
rotation, the indeterminacy was removed by searching the pattern most similar to the
population one. This was successful because the number of common factors was only two
both for the two real data examples. When the number of common factors is relatively
large, the pattern may depend on the searching methods and/or the definition of similar-
ity. In such cases, the asymptotic standard errors (preferably the higher-order asymptotic
standard errors) with bias correction may be only indices available.

8. Discussion

For derivation of the asymptotic biases of estimated standard errors, true models were
assumed. In practice, this assumption is not necessarily a realistic one. However, we can
relax the assumption by considering the following slight model misspecification (see e.g.,
Bentler & Dijkstra, 1985; Satorra, 1989, Ogasawara, 2002) without changing the essential
results:

Σt −Σ(θ) = O(n−1/2) (46)

where Σt is a true population covariance matrix while θ has the value obtained by mini-
mizing (8) with possible restrictions and S being replaced by Σt.

In this article, the normal theory standard error estimators have been focused on while
their asymptotic biases were derived with and without the normality assumption for ob-
served variables. More general standard errors are those for nonnormal data which are
given as

{ase(θ̂i)}2 = n−1

(
∂ θ

∂ σ′Ω
∂ θ′

∂ σ

)
ii

, (i = 1, . . . , q), (47)

where (Ω)ab,cd = σabcd − σabσcd. The asymptotic biases as well as asymptotic standard
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errors of the estimators of the nonnormal theory standard errors using (47) can, in princi-
ple, be obtained when the joint asymptotic distributions of σ̂abcd’s and σ̂ab’s are available.
In this case, s and σ in (5) should be replaced by those including fourth-order moments,
which gives somewhat involved results.

Appendix. Proof of Lemma 2

Suppose that θ̂ρ is given by minimizing

Fρ = ln |P(θρ)|+ tr{P(θρ)−1R} (A1)

with possible restrictions h (θρ) = 0 as required in exploratory factor analysis. Then, we
have the expansion of n âvar(θ̂ρi) with respect to r − ρ where r = vb(R), ρ = ρ(θρ) =
vb{P(θρ)} and vb( · ) is a vector consisting of the elements below the main diagonal of a
square matrix:

n âvar(θ̂ρ i) = n avar(θ̂ρ i) +
∂ n avar(θ̂ρ i)

∂ ρ′

×


∂ ρ

∂ σ′ (s− σ) +
1
2


(s− σ)′

∂2ρ21

∂ σ ∂ σ′ (s− σ)

...

(s− σ)′
∂2ρp(p−1)

∂ σ ∂ σ′ (s− σ)




+

1
2
(r− ρ)′

∂2n avar(θ̂ρ i)
∂ ρ ∂ ρ′ (r− ρ) +Op(n−3/2),

(i = 1, . . . , q), (A2)

where the terms in braces on the right-hand side of (A2) is obtained by the expansion of
r− ρ with respect to s− σ. By taking expectations of both sides of (A2), we have

abis{n âvar(θ̂ρ i)}=
1
2
∂ n avar(θ̂ρ i)

∂ ρ′ E


(s− σ)′

∂2ρ21

∂ σ ∂ σ′ (s− σ)

...

(s− σ)′
∂2ρp(p−1)

∂ σ ∂ σ′ (s− σ)


+
n−1

2

∑
a>b

∑
c>d

2
(
2H−1

A

∂HA

∂ρab
H−1

A

∂HA

∂ρcd
H−1

A −H−1
A

∂2HA

∂ρab∂ρcd
H−1

A

)
p+i,p+i

× (Π)ab,cd +O(n−2),

(i = 1, . . . , q), (A3)

where ρab = {P(θρ)}ab, (a > b) and (Π)ab,cd = n acov(rab, rcd), (a > b; c > d). In (A3),
(1/2) E[·] is the asymptotic bias of the sample correlation vector (for actual expression,
see Ogasawara, 2004). Rewrite the term of order O(n−1) in (1/2) E[·] as abis(r). Then,
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noting ∂ n avar(θ̂ρ i)/ ∂ ρ′ = −2
q∑

k=1

(
H−1

A
∂ HA

∂ θρk
H−1

A

)
p+i,p+i

∂ θρk

∂ ρ′ , (A3) becomes

=
∂ n avar(θ̂ρ i)

∂ ρ′ abis(r)

+ n−1

q∑
k=1

[
q∑

l=1

(
2H−1

A

∂HA

∂ θρk
H−1

A

∂HA

∂ θρl
H−1

A −H−1
A

∂2HA

∂ θρk∂ θρl
H−1

A

)
p+i,p+i

×n acov(θ̂ρk, θ̂ρl)− 2
(
H−1

A

∂HA

∂ θρk
H−1

A

)
p+i,p+i

1
2
tr
(

∂2θρk

∂ρ ∂ρ′Π
)]

=
q∑

k=1

[
q∑

l=1

(
2H−1

A

∂HA

∂ θρk
H−1

A

∂HA

∂ θρl
H−1

A −H−1
A

∂2HA

∂ θρk∂ θρl
H−1

A

)
p+i,p+i

×acov(θ̂ρk, θ̂ρl)− 2
(
H−1

A

∂HA

∂ θρk
H−1

A

)
p+i,p+i

{
n−1

2
tr
(

∂2θρk

∂ρ ∂ρ′Π
)
+

∂ θρk

∂ ρ′ abis(r)
}]

.

(A4)

In (A4), the factor in braces on the right-hand side of the last equation is abis(θ̂ρ i) (see
Ogasawara, 2004, Theorem 3), which gives (31). Q.E.D.
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