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ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTION OF
THE ESTIMATOR FOR THE GENERALIZED PARTIAL
CORRELATION UNDER NONNORMALITY

Haruhiko Ogasawara*

The generalized partial correlation is defined as a correlation between two vari-
ables, where the linear effects of common and unique third variables are partialed out
from the two variables. The generalized partial correlation includes simple, partial,
part/semipartial and bipartial correlations as special cases. The Edgeworth expan-
sion of the distribution of the standardized sample coefficient for the generalized partial
correlation is obtained up to order O(1/n) under nonnormality. Also asymptotic expan-
sions of the distribution of the Studentized estimator are obtained using the Edgeworth
expansion, Cornish-Fisher expansion and Hall’s method with variable transformation.
As extensions, the results of multivariate cases or generalized partial set-correlations
are given.

1. Introduction

The partial correlation coefficient and its variations are used to evaluate the strength
of association between two variables after the linear effect of a set of the third variable(s)
is partialed out. The simple correlation can be seen as a special case when the third
variables are null. When the third variables are partialed out only from one of the two
variables, the correlation is called the part or semipartial correlation. When different sets
of variables are partialed out from the two variables, the correlation becomes the bipartial
correlation (Ezekiel, 1941; see also Timm & Carlson, 1976, p.159).

The problem of the distribution of the sample coefficient of simple correlation has a
long history. Under the assumption of the normal distribution, Pearson and Filon (1898,
Equation (x1.)) derived the asymptotic covariance of two sample correlations, which has
been rediscovered by Girshick (1939, Equation (3.23)), Hsu (1949, p.400), and Olkin and
Siotani (1976, Equation (3.1)). Under the same assumption, Fisher (1915) gave the exact
distribution of the sample correlation. Under nonnormality, Isserlis (1916, Equation (21)),
Hsu (1949, Equation (79)), and Steiger and Hakstian (1982, Equation (3.4)) derived the
asymptotic covariance of two sample correlations (see also, Steiger & Hakstian, 1983).
Matrix expressions of the asymptotic covariance matrix of the vectorized sample correla-
tion matrix have been given by Nel (1985, p.143) under normality, Browne and Shapiro
(1986, Section 3), Neudecker and Wesselman (1990, Theorem 2) under nonnormality (see
also, Kollo & von Rosen, 2005, Subsection 3.1.4), and Neudecker (1996, Theorem 3) under
the elliptical distribution.
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For the asymptotic expansion of the distribution of the sample correlation, Hotelling
(1953, p.212) gave the asymptotic moments up to the sixth order under normality. Cook
(1951) derived the moments up to the fourth order under nonnormality. Konishi (1978,
Lemma; 1979a, Theorems 2.1 & 2.2; 1979b, Theorem 6.2) obtained the Edgeworth ex-
pansions of the distributions of the functions of the sample correlation matrix up to order
O(n~1) under normality, where n+1 = N is the sample size. Under the same assumption,
Niki and Konishi (1984) gave the higher-order Edgeworth expansions of the distribution
of the sample correlation while Akahira and Torigie (1998) obtained the corresponding
Cornish-Fisher expansion up to order O(n~!). Under nonnormality Boik (1998, Equa-
tion (19)) provided the asymptotic bias of the sample correlation using matrix expression
while Ogasawara (2004, Equation (A11)) gave the corresponding elementwise expression.
Kollo and Ruul (2003, Theorem 4) derived the multivariate Edgeworth expansion of the
vectorized sample correlation matrix up to order O(n’l/ 2) using the matrix expression of
partial derivatives. Nakagawa and Niki (1992), and Ogasawara (2006a) derived the Edge-
worth expansion of the sample correlation with different expressions up to order O(n~1)
under nonnormality. Boik and Haaland (2006) gave the similar expansion and that of
the Studentized estimator up to order O(n~'/?) using the matrix expression of partial
derivatives.

References for the distribution of the sample partial correlation are sparse. It is known
that under normality the distribution of the sample partial correlation reduces to that of
the sample simple correlation with adjustment for degrees of freedom (Fisher, 1924; see
also Anderson, 2003, Theorem 4.3.5; Muirhead, 1982, Theorem 5.3.1). To the author’s
knowledge, the asymptotic distribution of the sample partial correlation under nonnor-
mality was first given by Steiger and Browne (1984) using the normal approximation with
the asymptotic variance for the sample simple correlation between weighted sums of vari-
ables under nonnormality. Boik and Haaland (2006) gave the Edgeworth expansion of the
sample partial correlation up to order O(n~'/2). For the sample semipartial and bipar-
tial correlations, the asymptotic distributions are not available. However, the test of the
hypothesis of zero semipartial correlation is available using the proportional relationship
between the semipartial correlation and the corresponding partial correlation (see e.g.,
van den Burg & Lewis, 1990, Equation (4)).

The purpose of this article is to give the asymptotic expansions of the distributions of
the sample coefficients of various types of partial correlations including the generalized
one shown in the next section up to order O(n~!) and the corresponding expansions for
the Studentized estimators up to order O(n~1/2). Simulations will also be carried out to
see the usefulness of the asymptotic expansions in finite samples.

2. Generalized partial correlation

Lee (1978) extended the bipartial correlation to the case with common and unique
variables to be partialed out. Let x; (i = 1,...,5) be the p; x 1 random vectors with
cov(xz-,x}):Eij (pi xpj) and cov(x;) =3 (p; Xp;). Let X1.34 = x1—217342§4{34(xé,xﬁl)’

and Xg.35 = Xg — 227352§5{35(xg, x5)', where X1 34 = cov(xy, (x5,%}))(p1 X (ps +p4)) and
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Y3430 = cov((x5,%x4))((ps + pa) X (ps + pa)) with the assumption of positive definite
Y3434 and X35 35. That is, the variables in x3 are partialed out from both x; and x»
while those in x4 and x5 are partialed out only from x; and xs, respectively.

Lee (1978) defined the g;- and g,-bipartial correlations in the context of canonical cor-
relation analysis for x;.34 and x2.35. In his definition, the g;-bipartial correlation is for
the case with x3 uncorrelated with x4 and x5, while the gy-bipartial correlation is defined
when x3 is correlated with x4 and x5. In this article, the generalized partial correlation,
denoted by p1,34,2;35 (i = 1,...,p1; j = 1,...,p2), is defined irrespective of x3 being
uncorrelated or correlated with x4 and xs5:

P1,34,2;-35 = (B1342.35)i5/{(Z11:30)ii(Bo23s) 532 (i=1,...,p1; G=1,...,p2),
(2.1)
where (-);; denotes the (4, j)th element of the argument matrix and

/ —
COV(X1.34,X9.35) = 21.34,2.35, COV(X1.34) = 31.34,1.34 = 211.34, COV(X2.35) = X22.35.
(2.2)
The actual expressions of the partial covariance matrices of (2.2) are

-1 -1 -1 —1

31.34,2.35 = M2 — X1 34334 342342 — 1,35 235 35235,2 + 21,3434 342134,35 X35 35235,2,
-1 -1

Y134 = X1 — My 345502341,  Xo23s = Xaoz — Mo 35355 35335 2. (2.3)

It is easy to find that the simple, partial, semipartial and bipartial correlations are special
cases of the generalized partial correlation of (2.1) when some or all of x3, x4 and x5 are
null. The estimator of p1,.34.2;.35 is given by replacing X;;’s in (2.3) by the corresponding
pi X p; unbiased sample covariance matrices (S;;’s) with the sample counterparts of (2.1)
and (2.2).

3. Asymptotic expansion of the distribution of the sample generalized
partial correlation

For simplicity of notation, rewrite (2.1) by the generic expression:

0 = Y3/ 11a. (3.1)

That is, 6 denotes a generalized partial correlation while 11, ¥ and 3 are corresponding
partial variances and covariance. Recall that other types of (partial) correlations shown
earlier are given as special cases of (3.1). Assume that the estimator 0 of 0 is expanded
about the true 6 by the Taylor series up to the term of the third derivatives with respect
to sample variances and covariances of associated observed variables, i.e. s = v(S), where
S is the p x p sample unbiased covariance matrix with p = 2 4 p3s + p4 + ps based on N
observations for the random vector (X, Xo,,x3,%},X5)", Xz, = (Xx)1, (-); is the [-th ele-
ment of the argument vector, and v(-) is the vectorizing operator taking the nonduplicated
elements of a symmetric matrix.

Then, with the assumption of the existence of the finite moments of the observed vari-
ables up to a required order, the cumulants of w = n*/2( — #) up to the fourth order are
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given as
k1(w) = B(w) = n~2a1 + o(n~1/?),
ka(w) = E[{fw — E(w)}?] = ag + n ' Aas + o(n™1), (3.2)
k3(w) = B{w — E(w)}?] = n=Y2a3 4+ o(n™1/2),
ka(w) = E[fw — B(w)}*] = 3{r2(w)}* = n" oy + o(n™"),
where n=Y2aq, as, n=Y2a3 and n~'ay are the asymptotic cumulants of w up to the

fourth order, n~!Aay is the added higher-order asymptotic variance of w (see Fujikoshi,
1980; Ogasawara, 2006a). It is known that «a1,..., a4 and Aqg are given as functions of
two sets of arguments. The first set is given by the partial derivatives of § with respect to
s up to the third order evaluated at o = v(X), where X is the population counterpart of
S. The second set corresponds to the cumulants or moments of the associated observed
variables up to the eighth-order. That is, e.g.,

1 %0 a0 00

=—tr| —— , = —Q— 3.3

“= (80‘80’ ) 2= 90" 00 (8:3)
where Q@ = nacov(s) is the p* x p* matrix with p* = p(p + 1)/2; acov(-) denotes the
asymptotic covariance matrix of order O(n~1) for the argument vector of estimators,

(Q)ab,cd = Oabed — Oab0cd (p 2 a Z b Z ]-, p Z c 2 d 2 1), (34)

where the double subscript notation for the (a,b)th row and (¢, d)th column is used; oupea
is the fourth multivariate central moment of the variables X,, X, X, and Xg; 04p = (2)ap;
and 90/00 = 80/ds|s—, with other similar expressions for simplicity of notation. The
remaining expressions for ag, ay and Aay are available (e.g., Ogasawara, 2006a, Section 3;
2006b, Equation (3.4)) but are not repeated here since they are involved.

When the moments or cumulants of the p observed variables up to the eighth order are
available, the remaining task to obtain ay to ay and Aaw in (3.2) is to derive the partial
derivatives of 6 with respect to s up to the third order, which is given in two steps. In
the first step, the partial derivatives of 6 with respect to z/AJZ-’s are derived. Then, in the
second step, the partial derivatives of 1&1-’8 with respect to s are obtained. The results will
be given in the appendix.

Approximations to the distribution function of w by the Edgeworth expansion are given
by

w _ o ag . 9 af1 2y *
Pr| — <z| =®(z)—nY2{ — + (z=1)pd(2) —n {—(Aag—i—a)—
<a1/2 ) aém 60[3/2 2 Va

5 2

N (044 Oél()ég) 22 =3z a3 (2° — 1023 + 152)

Jr
a3 7203

oy o bote) +otn)

(3.5)

(Ogasawara, 2006a), where ¢(z) = (1/v/2m) exp(—2%/2) and ®(2) = [*__ #(t)dt. The first
term ®(z) on the right-hand side of (3.5) gives the usual normal approximation. The
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approximation up to the term of order O(n=1/2) in (3.5) is the single-term Edgeworth
expansion. The approximation up to the term of order O(n~!) in (3.5) is the two-term
Edgeworth expansion. It is known that the approximations to the distribution functions
by the Edgeworth expansions can be locally decreasing. Hall’s (1992) method using vari-
able transformation is free from this phenomenon though the approximation is of the same
order as the single-term Edgeworth expansion:

Pf( ~7 < z) = ®{g(2)} +o(n™"7?), (3.6)

Ay
3
g(z):%wo‘;/2 nay (07 Pay) L
as 6043/2 aé/Q

In (3.5) and (3.6), the standardized statistic w/oé/2 includes the population value s,

which is unavailable in practice, while the Studentized or pivotal statistic is available:

‘o n/2(6 — 0) _w (3.7)

.1/2 1727
Qy Qg

whose cumulants up to the third order are

ri(t) =n 2 +0(n7Y), ka(t) =1+0(n7Y), rks(t) =n"2a4+0(n"3?), (3.8)

where 1 % ooos 0 o
;=12 1 -3/2 ) , o)
e {30 e 9o (5’5(4))30(4) } ’ (3.9)
3.9
. =3/2 —3/2 00 8012 00 80@
a5 = @y ag = 3ay {80”980 +60" (s, 824))80'(4)

where s(4) is the ,;3C; X 1 vector of the nonduplicated sample multivariate fourth mo-
ments, o4 is its population counterpart, and acov(s,s’(4)) is the p* x ,13C4 asymptotic
covariance matrix of order O(n~1) (Ogasawara, 2007).

Let zz = ®~1(1—a) (e.g., @ = .05). Then, the confidence interval with the asymptotic
confidence coefficient 1—@& accurate up to order O(n~'/2) by the Cornish-Fisher expansion
is

0+ [£2a2 — nV2{ah + (a4/6) (22 5 — 1)Hn~ Y26y, (3.10)

The adjusted Cornish-Fisher expansion gives

0+ 252 exp[Fn1/?{a) + (d/3/6)(zo%/2 - 1)}/'3&/2]”71/25‘%/2 (3.11)

with the corresponding double signs, where we find that the terms 25 /5 exp|- Jn=1/ 2(34%/ 2

have the same signs as those by the normal approximation (the author is indebted to
an anonymous reviewer for this adjustment). The confidence interval by Hall’s (1992)
method corresponding to (3.10) is

6 —n~lay 8] + 6ay%(a5) T ({1 — (1/2)a5 (0P agys — (07! /6)a5)} P — 1] (3.12)
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Under normality, (3.9) becomes somewhat simplified:

ol — o=, 1@73/2 00 dants
= NT1 — 5 = Ot
NT1 = ONT2 5 ONT2 37 9o

(3.13)
oo — 0= 2o — 30, =3/2 00 Odants
NT3 NT2 UNT3 NT2 557 NT 9o

where the subscript NT denotes that the subscripted value is given under normality, and
(ONT)ab,cd = TacObd+0adTbe. In practice, the normal-theory Studentized statistic w/ dll\l/%z
tends to be used inappropriately under nonnormality. In such a case, it is known that

(3.9) becomes

" _—1/2 1 —3/2 98 ., dant2 " -1
QNT1 = QN2 01 — §O‘NT2 9o oo ANT2 = ONT2(2;

o (3.14)
—3/2 —5/2 QNT2
aNTs = aNT/Z a3 — 3aNT/2 a2 30./9 o

(Ogasawara, 2007).

4. A numerical example

An artificial data set using the following 5 x 5 population covariance matrix with unit
variances is used for illustration:

1.00
.64 1.00 symmetric
Y= 48 .48 1.00 ) (4.1)

24 24 24 1.00
24 24 24 .16 1.00

where each x; (i = 1,...,5) consists of a single variable. The five types of correlation coef-
ficients, p12 (simple), p12.3 (partial), p1.342.3 (semipartial), p1.4,2.5 (bipartial) and p1.34,2.35
(generalized), are considered, where pj.342.5 is somewhat different from the usual semi-
partial correlation since pi.34,2.5 is a semipartial correlation between X;.3 and Xs.53 with
X, being partialed out only from Xj.3.

Simulations were carried out under normality and nonnormality with the sample sizes
N = 50, 200 and 400. Nonnormal observations were generated by x = X/2f, where 31/2
is a Cholesky-decomposed lower-triangular matrix with 3 = 21/231/2/_ and each element
of f is independently chi-square distributed with 1 degree of freedom with standardization
to have unit variance. From the generated observations, the five sample correlation coef-
ficients were estimated. This was repeated 1,000,000 times. From the 1,000,000 estimates
for each correlation coefficient, the k-statistics (unbiased estimators of cumulants) were
obtained with multiplication of appropriate powers of n for ease of comparison to the
asymptotic values independent of n.

Table 1 shows the population coefficients, and the asymptotic and simulated cumulants
of their estimators. The simulated aé/ 2, a1 and ag are reasonably similar to their cor-
responding asymptotic values even when N is as small as 50 while the absolute values
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of simulated a4 under nonnormality are smaller than the corresponding asymptotic val-
ues though the tendency of the simulated values approaching the asymptotic values with
the increase of N is observed. It is seen that the nonnormal cases give larger absolute
cumulants than the normal ones, which may be partially explained by the large positive
kurtosis of the chi-square distribution with 1 degree of freedom.

Table 2 gives the results of the standard error ratios. In HASE/ASE, HASE =
{(aa/n) + (Aas/n?)}Y/? is the higher-order asymptotic standard error, and ASE =
(aa/n)'/? is the usual asymptotic standard error while in SD/ASE, SD is the true or
simulated standard error given by the square root of the unbiased sample variance based
on 1,000,000 estimates for each correlation coefficient. From the table, it is found that
under normality, HASE gives values closer to the true ones than ASE while under non-
normality HASE gives somewhat extreme values when N = 50.

Table 3 shows the results of the normal-theory Studentized estimators under normal-
ity and nonnormality. The simulated values with relatively large sample sizes are close
to their asymptotic values. It is of interest to find that the signs of the first and third
cumulants in Table 3 are positive while they are negative in Table 1.

Table 4 gives the similar results based on Studentized estimates using the asymptot-
ically distribution-free (ADF) theory (see (3.7) with (3.9)) under nonnormality. For the
sample asymptotic standard errors, the sample fourth moments of observable variables
were used as well as the usual unbiased sample variances and covariances. The number of
replications in the simulations was reduced to 100,000 to save computation time. Table 4
shows that when N = 50, the simulated standard deviations of the Studentized estimates
are substantially larger than the unit asymptotic values (compare the corresponding re-
sults in Table 3).

Table 5 illustrates the accuracy of confidence intervals using sample cumulants in the
case of pj.34,2.35 under normality and under nonnormality. The first half of the table is
based on the Studentized estimates using normal theory under normality while the sec-
ond half of the table is given by the Studentized estimates based on the ADF theory
under nonnormality. The proportions of the true values below the lower endpoints of
confidence intervals are shown with the number of replications being 100,000. In Table 5,
three methods are compared: N* (the usual normal approximation), A.C-F (the adjusted
Cornish-Fisher expansion) and Hall (Hall’s method using variable transformation). The
confidence interval by A.C-F when z5 = 0 in Table 5 is defined by 6 & 0 (see (3.11)). It
is seen that A.C-F and Hall improve over N* though N* shows reasonable results in the
endpoints with nominal values .9 to .995 under normality. Among the two methods, Hall
seems to give results slightly closer to the corresponding nominal values than A.C-F in
these data.

Table 6 gives 10°x root mean square errors with respect to the distribution functions
of the standardized estimators approximated by N* E1 (the single-term Edgeworth ex-
pansion), E2 (the two-term Edgeworth expansion) and Hall’'s method, where the true
values are given by the simulations used in Table 1 and the asymptotic values are given
using the population asymptotic cumulants (see (3.4) and (3.5)). Errors are defined as the
approximated values minus the corresponding true values at the 40 standardized points,
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Table 1: Simulated and theoretical cumulants of the non-Studentized estimators

Correlation aé/Q (dispersion) a1 (bias) a3 (skewness) o (kurtosis)
coefficient N Normal C1 Normal Cl Normal Cl1  Normal C1
Simple 50 .60 1.00 —.20 -39 -85 —3.38 3.1 -1.7
P12 200 .59 1.06 —.20 —.43 —-81 —4.54 2.9 -9
=.640 400 .59 1.08 —.18 —.45 —-.79 —4.86 3.2 —-1.2
Th. .59 1.10 —.19 —.45 -.79 —5.26 2.9 12.2
Partial 50 .74 1.21 —.20 -94 -1.27 —5.88 4.0 10.3
p12-3 200 .72 1.25 —.20 -1.05 -1.17 —7.18 3.7 17.8
=.532 400 .72 1.26 —.20 —-1.08 -1.16 —7.49 3.5 21.7
Th. 72 1.28 —-.19 -1.10 -1.18 —=8.37 3.8 46.9
Semipartial 50 .75 1.20 —.46 —-1.30 —-1.24 —5.48 3.5 7.5
P1-34,2-3 200 .73 1.24 —.43 —-1.41 -1.16 —7.06 3.4 15.7
=.516 400 .73 1.26 —.43 —-1.42 —-1.18 —7.56 2.9 22.0
Th. .73 1.27  —.44 —-1.45 -1.16 —8.29 3.4 46.6
Bipartial 50 .68 1.02 —.70 —1.45 -94 -3.17 2.4 —-1.0
pP1.4,2:5 200 .67 1.06 —.69 —1.59 -89 —4.56 2.2 5.0
= .567 400 .67 1.08 —.68 —1.61 —-90 —4.95 1.9 8.5
Th. .66 1.09 —.69 —1.63 —-90 —5.53 2.5 21.0
Generalized 50 .76 120 —-68 —1.57 —-1.25 —5.13 34 3.8
£1-34,2.35 200 .74 1.24 —.65 -1.66 —-1.17 —6.77 3.3 13.0
=.502 400 .74 1.25 —.66 -1.70 -1.15 -—7.36 3.4 20.7

Th. .74 1.27 —-66 —-1.76 —-1.16 —8.20 3.2 47.0

Note. N = The sample size in the simulation, Th. = Theoretical or asymptotic values,
Normal = Normally distributed data, C1 = Chi-square distributed data with 1 degree
of freedom.

—3.8,—3.6,...,4.0. The mean square was taken over the 40 points. In the table, E1, E2
and Hall have errors smaller than N* and, as a whole, E2 has errors smaller than E1 and
Hall while in some cases E2 gives errors larger than E1 and Hall.

5. Multivariate cases

The generalized partial correlation (covariance) was initially introduced by Lee (1978)
in multivariate form as in (2.3). In this article, the overall or set-correlation indexes be-
tween x1.34 and xg.35 are considered (for set correlation see Cramer & Nicewander, 1979;
Cohen, 1982; van den burg & Lewis, 1988; Cohen, Cohen, West & Aiken, 2003, Chap-
ter 16). One of the basic overall indexes was given by Hotelling (1936, Equation (1.1))
based on Wilks (1932):
|

T 5.1
e (5-1)

PR =1-

Uy Pio
Yo Woo

and Wy = W, (see (2.3)). Note that (5.1), in form, is equal to Rozeboom’s (1965)
between-set correlation and gives 1 — [[?_, (1 — A?), where J; is the i-th canonical corre-

where, in the current case, ¥ = [ }, Wi = X11.34, Poo = Yoo35, Wio = Xi.342.35

lation between x1.34 and Xs.35 and ¢ = min(py, p2).
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Table 2: Simulated and theoretical standard error ratios of the non-Studentized estimators

Correlation Normal C1
coefficient N SD/ASE HASE/ASE SD/ASE HASE/ASE
Simple 50 1.023 1.023 910 .816
P12 200 1.006 1.006 967 .958
400 1.002 1.003 .981 .979
Partial 50 1.026 1.026 .947 .870
P12-3 200 1.006 1.006 978 .970
400 1.003 1.003 .989 .985
Semipartial 50 1.031 1.030 .943 .865
P1.34,2:3 200 1.008 1.007 977 .968
400 1.004 1.004 .987 .984
Bipartial 50 1.027 1.027 .937 .856
014,25 200 1.006 1.007 976 967
400 1.004 1.003 987 .983
Generalized 50 1.035 1.034 .942 .865
01.34,235 200 1.009 1.008 976 .969
400 1.004 1.004 .986 .984
Note. N = The sample size in the simulation and the theoretical ratio

(HASE/ASE), SD = The standard deviation from the simulation, HASE =
{(az/n)+ (Aaz/n?)}/? with n = N —1, ASE = (a2/n)'/?, Normal = Normally
distributed data, C1 = Chi-square distributed data with 1 degree of freedom.

Another basic overall index is
P = ¢ (U WU, Uy)), (5.2)

where ¢ is a constant. Cramer and Nicewander (1979, Equation (28)) and Takeuchi,
Yanai and Mukherjee (1982, Equation (6.68)) used ¢ = ¢. Hooper (1959, 1962) used
¢ =p; (i =1,2) when x; is a set of criterion variables and x3_; is a set of explanatory
variables. Equation (5.2) is equal to ¢™' Y7 AZ.

The sample values of (5.1) and (5.2) are given by replacing ¥ with its sample coun-
terpart. The asymptotic expansions of the distributions of p3;; and p3, are available
when the partial derivatives with respect to sq;’s are provided, which will be given in the
appendix.

Appendix. The partial derivatives

The following partial derivatives are those evaluated at the population values.

A. The partial derivatives of 6 with respect to s

A.1 The recursive expressions of the partial derivatives ofé with respect to s

0 _i 00 O, %6 _i i 0 0 0y 08O
0oar — O 0o’ 00a00cq 00V Doap 00cq Oy Doqp00cq )’

i=1 \j=1



24 H. Ogasawara

Table 3: Simulated and theoretical cumulants of the normal-theory Studentized estimators

. 1/2 1/2 n / " ’ "
Correlation aNT Qo anti  ONT1 ONT3  ONT3

coefficient N  Normal C1 Normal C1  Normal C1
50 1.08 2.37 1.01 3.87 5.5 205.0

Simple 200 1.02 1.96 .97 3.67 4.2 85.1
P12 400 1.01 1.90 .99 3.63 4.1 74.5
Th. 1 1.86 .96 3.67 3.8 66.3

50 1.09 2.10 .86 2.03 4.8 98.3

Partial 200 1.02 1.84 .81 1.85 3.6 50.7
pP12:3 400 1.01 1.81 .80 1.84 3.4 46.8
Th. 1 1.78 .80 1.85 3.2 41.5

50 1.08 1.92 .40 .96 4.0 53.5

Semipartial 200 1.02 1.78 41 1.02 3.2 39.1
01.34,2:3 400 1.01 1.77 41 1.08 3.0 37.6
Th. 1 1.75 .39 1.11 3.0 35.6

50 1.06 1.65 —.12 —.12 3.2 22.2

Bipartial 200 1.02 1.63 —.08 .05 2.9 22.2
pP1.4,2:5 400 1.01 1.63 —-.07 .13 2.8 23.3
Th. 1 1.64 —.08 .22 2.7 24.3

50 1.08 1.82 .02 .23 3.5 36.9

Generalized 200 1.02 1.74 .06 44 3.0 32.5
£1.34,2-35 400 1.01 1.73 .05 .46 2.9 31.5
Th. 1 1.72 .04 .48 2.8 30.7

Note. N = The sample size in the simulation, Th. = Theoretical or
asymptotic values, Normal = Normally distributed data, C1 = Chi-
square distributed data with 1 degree of freedom.

o0 23: Z Z 9°0 O Oy Oy
aaabaacdaaef - P = 6’(/&81#]‘6’(/% 80@1) aUCd adef
. i 0 Oui 0\, 06 D34h;
(9’1,/)1'81#]‘ (90’@ (90’6(160'5]0 31% 30a580'cd306f
p>a>b>1;p>c>d>1;p>e>f>1),

where deenotes the sum of k terms with similar patterns.

A.2 The partial derivatives ofé with respect to 1[}/5

W - ( 2 T s, ¢1 Y23 s, (¢1¢2)_1/2) ;

g_;é =i azfgw T % = Sy,
% = ——wl 3/2-1/2 % _ 1/J1 1/2-3/2, ;’%@3 o

g_z _ _Ewl UENSSIENS 81/2;891/}% _ _gw;m o2y,
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Table 4: Simulated and theoretical cumulants of the ADF-theory Studentized estimators

Correlation C1
coefficient N o/ ah ol
50 1.69 1.72 44.1
Simple 200 1.19 1.11 8.7
P12 400 1.10 .99 6.1
Th. 1 .92 4.0
50 1.62 1.16 37.9
Partial 200 1.19 .96 11.3
p12.3 400 1.10 1.00 9.2
Th. 1 1.14 7.9
50 1.59 .61 30.6
Semipartial 200 1.18 .55 11.6
P1.34,2-3 400 1.10 64 8.8
Th. 1 .92 8.3
50 1.49 —.14 18.3
Bipartial 200 1.17 .09 10.1
P1.4,2.5 400 110 21 81
Th. 1 48 7.6
50 1.57 .22 27.1
Generalized 200 1.19 .40 11.1
p1.3472.35 400 110 49 91
Th. 1 71 8.6

Note. N = The sample size in the simulation, Th. =
Theoretical or asymptotic values, C1 = Chi-square
distributed data with 1 degree of freedom.

%6 _3/2 —5/2

2o Z/f Y3,
>0 _ 771/}—1/2 _7/2¢3 90 _ 3 -5/2-1/2
o3 Tooysop; 4T S

%0 _ 1 32 3

N3O Opy 471 S

930 . 1/1_1/2 —5/2 030 _ 930 _ ﬁ _
Mp30PE TOY3OYy 9Pz O3

A.8 The partial derivatives of 1&/5 with respect to s

Let 0341 = cov((x3,x})’, X1,), 0352 = cov((x3,x5)", Xa,),
o11 = var(Xy,), 012 = cov(Xy,, Xo,), 022 =var(Xq,) (i=1,...,p1; j=1,...,p2),
Y1 =P1a — 1B = 011 — Ohy 1 B3/ 540541, Yo = haa — Yo = 022 — 05 X35 550352,

Y3 = Y3a — Y3 — ¥3c + Y3p
— ! -1 / —1 / —1 -1
= 012 = 034123434034,2 — 03512035 35035.2 + 0341333 34 3434,35 i35 350°35,2

where the subscripts ¢ and j are temporarily suppressed in e.g., 012 for simplicity of nota-
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Table 5: Simulated proportions below the lower endpoints of the confidence intervals for pi.34,2.35

Nominal values
N  Method .0050 .0250 .1000 .5000 .9000 .9750  .9950

Based on the normal-theory Studentized estimates under normality

N* .0166  .0441 .1166  .4779 .8950 .9756  .9953
50 A.C-F .0071  .0320 .1114 4779 .8882 .9699  .9936
Hall .0037 .0280 .1108 .5001 .8885 .9702  .9937
N* .0099 .0320 .1052 .4909 .9007 .9786  .9962
200 A.C-F .0059 .0263 .1014  .4909 .8965 .9742  .9945
Hall .0054 .0257 .1013 .5024 .8965 .9744  .9946
N* .0075 .0298 .1045 .4920 .9019 9782  .9964
400 A.C-F .0050 .0253 .1021 .4920 .8991 .9751  .9950
Hall .0048 .0250 .1020 .5003 .8991  .9752  .9951

Based on the ADF-theory Studentized estimates under nonnormality
(chi-square distributed data with 1 degree of freedom)

N* .0605 .0994 1744 4590 .8244 9304 .9736
50 A.C-F .0367 .0814 .1739 .4590 .8312 .9338 .9756
Hall .0180 .0626 .1722 4910 .8305 .9350 .9771
N* .0268 .0595 .1380 .4804 .8808 .9681 .9925
200 A.C-F .0176  .0510 .1386 .4804 .8759 .9618  .9896
Hall .0146  .0485 .1383 .5030 .8758  .9622  .9900
N* 0177 .0479 1262 4878 .8920 .9734  .9949
400 A.C-F 0128  .0417 .1261  .4878 .8852 .9662 .9914
Hall .0118 .0407 .1260 .5051 .8849  .9667 .9919

Note. N = The sample size in the simulation, N*=Normal approximation,
A.C-F = The adjusted Cornish-Fisher expansion, Hall = Hall’s method
by variable transformation.

tion. Then, the nonzero partial derivatives of 1&1 A through 1[}3]3 with respect to sup’s are

as follows:
OPia
don ’
/ —1
OYB 6‘734,12_1 o T 234,340 B 30’34,1
= 34,1 — 0341 12434 34
aaab agab 34,34 34,1 agab 34, 34,3 agab
3 /
_ a‘734,1271 o
= 34,340°34,1,
aO'ab
3 /
Ohan 1 0o <~ 00355 5ol OP3a 1
p) =1, p) = ) 35,359 35,2, ) =1,
022 Oab Oab 021
) °. 0o,
3p 034,12_1 o
= 34,34034,2,
aO'ab 8Uab
B 3. 9o ) ° do!
V3o Blg1 V3D 31g 1 5 sl o
= 35,2 = 34,35 35,2
00y Doy 3535 " 0w Doy 3434 35,35 )
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Table 6: 10° xRoot mean square errors of the asymptotic distribution functions of the standard-
ized estimators

Correlation Normal Chi-square with 1 degree of freedom
coefficient N* E1l E2 Hall N* El E2 Hall
N =50
P12 1226 170 47 200 1748 1238 1123 1244
p12:3 1056 228 36 266 1887 821 1116 828
01.34,2.3 1410 282 50 333 2486 858 1169 858
pP1.4,2:5 2346 271 34 296 3277 920 1231 946
P1-34,2-35 2043 361 51 397 3017 862 1200 878
N =200
P12 614 44 20 49 756 428 143 429
p12:3 496 55 24 62 962 309 164 302
p1.34,2.3 663 69 11 82 1273 326 172 319
P1.4,2.5 1143 67 14 74 1690 337 179 335
01.34,2.35 970 94 34 103 1515 332 175 328
N =400
P12 419 32 29 27 502 237 50 237
p12.3 353 31 13 36 675 168 76 163
P1.4,2-5 803 44 21 52 1182 181 7 181
P1.34,2.35 690 45 15 48 1080 208 48 202

Note. N = The sample size in the simulation, N¥ = Normal approximation, E1 = The
single-term Edgeworth expansion, E2 = The two-term Edgeworth expansion, Hall =
Hall’s method by variable transformation.

2 2y -1
0% Z 005, 4 8234 IHsa81 Lo 0 E34 34
Ao — 34,1 a5 0341
aUabaacd 80ab aCT cd 34,1 8aab8 ’
02 5. 005 5 055, 0*%y
V9B _ 0'35 2 35 35 T 35,35
T Fa 0352 (a5 0352
8aab5‘ocd 8Uab 8ac 35,2 8oabaacd ’
2 2y1—1
7 ¢3B Z 80'34 1 3234 34 T 0 234,34 o
= 0342 S a 0342
aCrabaa'cd 0o ap 6O'ccl 34,1 004400¢q ’
2 2
03 728‘73513235350 ‘o 9 235 35
35,2 A5 0352
80abaacd aO-ab aacd 35,1 80abaacd ’
9 5P>=20
9 Ysp 30'341 8234 34 5 -1
A E 5 2434,352435 35035,2
80ab800d 8aab 004 '
2
+ o 23“42 )P NI Y D S 3 0545
3417 A 2434,35 35,2 34,35 0352
34,1 00 ap 00w 35 35 34,1 34 34 00 ap00 o )
3
0% 28034152343430'341 25‘73418234340
S — oo 0341
30a580'cd306f 30ab 8O'Cd (90'5]0 (90’@ 80'¢d30'ef

+0_ a Z]34 34
34,1 30a580'cd306f T34l
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D*ap Z 005 5 5235 35 00352 Z Do o O? 235 35
30a580'cd306f 0oqy,  O0cq (90'5]0 0o e 8O'Cd306f 85,2
to! o? Z335 35
35,2 30a580'cd306f 35 Z
s Z 6‘7'34 1 34 34 30’34,2 Z 80’34 1 o 254 34
8aab806d803f Ooay O0cqg aaef Ooap 505d803f 34,2
to! oM 2§4 34
34,1 7{90@ 00cad0es 0342,
1
Psc 8035 1 8235 35 00352 Z 8‘7'35 1 o 235 35
8Uab80'cdaaef 80 ab 80' cd c%ef c%ab aacdadef
T o 235 35
35,1 (90'&},(90'6(160'6]0 T35,2;
: P.
PYsp ° SZ: o 4 8234 34 0334 35 sl
8aab806d803f aJab aUcd aJef 35 35%35,2

8034 1 0 2§4 34
+ PIumg a1
Z( 00ay, 00cq00cf 34,35 2435 350°35,2

00'34 1 > 235 ,35
+ = b Z]34 34234 JSWU 5,2
3234134

+ by o3y 3535 s O35 0
34,1 aaabaacdaacf 35,35

3235,35
60'ab60'cd60'ef
p>a>b>1;p>c>d>1;p>e>f>1).

/ —1
+ 0341234 34 234,35 0352

The nonzero partial derivatives of o34 1, 2??41’34, 334,35 and o352 with respect to o4p’s, in
form, are

00341 -1

80'54’1 P3+pas

(X351 54)i 2 — dap _ _ _ _

8(234734) Jb = - 2 . {(2341,34)ia(2341,34)jb + (2341,34)1‘17(2341,34)]‘11}7
32(23_4134)1“ 1 ° _ _ _

8(234 34) bé(ESfl 34) 4 = 1(2 - 5ab)(2 - 5cd) Z (2341,34)ic(2341,34)da(2341,34)bja

53(23_41,34)1‘3‘ _
0(234,34)ab0(X34,34) cd0(X34,34) e f

1
*§(2 — 0ab)(2 — 0ca)(2 — bey)
48
X Z (2541,34)1‘6(2541,34)fc(2§41734)da(2??41,34)17]'

(,j=1,...,p3+Ds; p3+pPs>a>b>1;ps+ps>c>d>1; ps+ps>e> f>1),
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oY . 2— 0,
3435 _ b(Eab +Ep)(p3 >a>b>1),

0(X34,35) ab 2

0%34,35
e = FBpiap (a=1,...,ps; b=1,...,p3),
(Z3435)patar ( )

0%34,35 0035,
v =Eqp4p (a=1,...,p3; b=1,...,p5), = =1 ,
8(234,35)a,p3+b p3+ ( 5) (90'%572 p3+ps

where Iy is the k x k identity matrix, 4 is the Kronecker delta, E,; is the matrix of an
appropriate size, where the (a, b)th element is 1 with other elements being 0. The partial
derivatives of 2551’35, in form, are given from those of 254{34 by replacing 33434 and pa
with X35 35 and ps, respectively.

B. The partial derivatives of p?vu with respect to s

Rewrite p3;, as p3;; = 1 —exp(—=1*), I* = —In |¥| + In |[¥1;| + In |Pay|, where [* is the
population value of —(2/n)times the log likelihood ratio. Then, in the first step,

op3p, ol A
ZPML — exp(—1* =(1- —

60',11) exp( )aaab ( le) 60’@1),

92p2y, ) ol ol 021
———=00=pw) | — :
aaabaacd aJab aUcd 8aab805d

P2 1oy (20 o or Lo ot Lo

60'ab60'cd60'ef N Pat 60’,11) 8Ucd 60'6‘,0 80@1) aacdadef 8Uab80'cdaaef

(p>a>b>1;,p>c>d>1;,p>e>f>1),

where p = Zf’zl p;. The partial derivatives of [* with respect to sg’s are given from

Oln|®| _ (\I:—l v )

8aab aaab
2
o = (Vo s i)
3
aai;:J;Lef =t (2‘11_1 éfafb LA go‘l:d L 5‘80\1
3 2 3
B Z \1171 (;)O"fb ‘Il71 6Uil§;ef + ‘Il71 80ab§0";1;80€f)

p>a>b>1;p>c>d>1;p>e>f>1),

where the partial derivatives of ¥ with respect to o4p’s, in form, are given in a manner
similar to those of 11, ¥9 and w3 in Subsection 1.3 of this appendix with the following
definitions:

(®)1,1, = (P11)ij = 01,1, — 441, T34 340341, (1,5 =1,...,p1),

o _ / —1 / —1
(‘I,)lin = (P12)ij = 01;2; — 0'34,1i234,340'34,2j - 0'35,1i235,350'35,2j

! —1 —1 . R
+ 0'34711-234734234,35235,35‘735,27 (Z =1...,p1; j=1,... ap2)7
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(®)a,2, = (W22)ij = 02,2, — 050, X35 350852, (1,5 =1,...,p2),

where 1, =i (i=1,...,p1)and 2, =p; +i (i =1,...,p2).
The partial derivatives of In |¥1;| and In |®s5| with respect to o4p’s, in form, are simi-

larly obtained.

C. The partial derivatives of ﬁlzvlz with respect to s

For convenience, W' W,W,,' Wy, is seen as the product of ¥ '®¥, and ., ¥y,
Then, in the first step,

ke _ 1, (0% Wi Lig 095 Wy
= tr{ ———————9,, ¥ W W, —==——
aO—ab ¢ g aO—ab 22 2t H 2 aO—ab ’
82[)%/[2 _ 711] 8‘111_11\1112 8‘112_21‘:[’21 i 8‘1’ ‘1’12 8‘1122 ‘1121
aaabaacd aaab aacd aacd aaab
o e /2P O*W ., Wy
— U =yl v, —22 =
00a00cq 222 TR 00ap00cq )’
I T Z Vi W W OV W gy,
6aab806daa€f (‘)oab aUCdadef aUabaO'CdaUef

PO
+ \I/ \I’lg 22 21 >

004400:400 ¢
(p>a>b>1;p>c>d>1;p>e>f>1).

In the above expressions, the partial derivatives of ¥ ,'W 5 and W5, Wy, with respect to

Oap’s, in form, are

FoX /2P 2 — 6w
= U (B + By P10
a(‘Illl)ab 2 ( » + By ) 11 12

= 2O ) (B ) + (BT (T )0} (> a>b> 1),

(WU [ Ws),
a(‘1112)ab

PO, 1 8
6(\I}ll)aba(ql11)cd - 1(2 - Z lI’ll lI’ll )bc(‘llll l:[’12)

pr=z2a>b>1; pr>c>d>1),

= (lIlﬁl).a (a=1,...,p1; b=1,...,p2),

a2(';['1711‘1’12)-17 _ 1 -1 -1
)W)y 20 e B Bae e
2 — 6, _ _ _ _
= =S (T + (P a7 e}
(azlﬂ"'apl;bzla"'aPZ;plzczdzl)a
PUTlw 1 8o B
U2 === (2= 0)(2 = 0ea) (2 = 0ep) D (TT).a( T3 e

O(¥11)ap0(¥11)cdO(¥11)ey 8
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X (W) ae (U7 W1a) 5.
(pr=a>b>1;pr>c>d>1; pp>e>f>1),

O3 (W' Wia) 1 _ _ _
Wm0 i) ead(Trr)ey ~ 20 02 = 0er) 2 (D) (¥ ae (P11 s

(a=1,...,p1; b=1,...,pss p1>2c>d>1;pr >2e> f>1),

8

where (-)., and (-)p. denote the a-th column and b-th row of the argument matrices, re-
spectively. The partial derivatives of \11521\P21 with respect to g4p’s, in form, are given by
replacing W11, W15, p; and p2 in the above results by Yoo, Woq, po and py, respectively.
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