
Behaviormetrika
Vol.35, No.1, 2008, 15–33

ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTION OF
THE ESTIMATOR FOR THE GENERALIZED PARTIAL

CORRELATION UNDER NONNORMALITY

Haruhiko Ogasawara∗

The generalized partial correlation is defined as a correlation between two vari-
ables, where the linear effects of common and unique third variables are partialed out
from the two variables. The generalized partial correlation includes simple, partial,
part/semipartial and bipartial correlations as special cases. The Edgeworth expan-
sion of the distribution of the standardized sample coefficient for the generalized partial
correlation is obtained up to order O(1/n) under nonnormality. Also asymptotic expan-
sions of the distribution of the Studentized estimator are obtained using the Edgeworth
expansion, Cornish-Fisher expansion and Hall’s method with variable transformation.
As extensions, the results of multivariate cases or generalized partial set-correlations
are given.

1. Introduction

The partial correlation coefficient and its variations are used to evaluate the strength
of association between two variables after the linear effect of a set of the third variable(s)
is partialed out. The simple correlation can be seen as a special case when the third
variables are null. When the third variables are partialed out only from one of the two
variables, the correlation is called the part or semipartial correlation. When different sets
of variables are partialed out from the two variables, the correlation becomes the bipartial
correlation (Ezekiel, 1941; see also Timm & Carlson, 1976, p.159).

The problem of the distribution of the sample coefficient of simple correlation has a
long history. Under the assumption of the normal distribution, Pearson and Filon (1898,
Equation (xl.)) derived the asymptotic covariance of two sample correlations, which has
been rediscovered by Girshick (1939, Equation (3.23)), Hsu (1949, p.400), and Olkin and
Siotani (1976, Equation (3.1)). Under the same assumption, Fisher (1915) gave the exact
distribution of the sample correlation. Under nonnormality, Isserlis (1916, Equation (21)),
Hsu (1949, Equation (79)), and Steiger and Hakstian (1982, Equation (3.4)) derived the
asymptotic covariance of two sample correlations (see also, Steiger & Hakstian, 1983).
Matrix expressions of the asymptotic covariance matrix of the vectorized sample correla-
tion matrix have been given by Nel (1985, p.143) under normality, Browne and Shapiro
(1986, Section 3), Neudecker and Wesselman (1990, Theorem 2) under nonnormality (see
also, Kollo & von Rosen, 2005, Subsection 3.1.4), and Neudecker (1996, Theorem 3) under
the elliptical distribution.

Key Words and Phrases: partial correlation, semipartial, bipartial, Edgeworth expansion, Studentized

estimators, nonnormality.

∗ Department of Information and Management Science, Otaru University of Commerce,

3–5–21, Midori, Otaru 047–8501 Japan. Email: hogasa@res.otaru-uc.ac.jp

This work was partially supported by Grant-in-Aid for Scientific Research from the Japanese Min-

istry of Education, Culture, Sports, Science and Technology.



16 H. Ogasawara

For the asymptotic expansion of the distribution of the sample correlation, Hotelling
(1953, p.212) gave the asymptotic moments up to the sixth order under normality. Cook
(1951) derived the moments up to the fourth order under nonnormality. Konishi (1978,
Lemma; 1979a, Theorems 2.1 & 2.2; 1979b, Theorem 6.2) obtained the Edgeworth ex-
pansions of the distributions of the functions of the sample correlation matrix up to order
O(n−1) under normality, where n+1 = N is the sample size. Under the same assumption,
Niki and Konishi (1984) gave the higher-order Edgeworth expansions of the distribution
of the sample correlation while Akahira and Torigie (1998) obtained the corresponding
Cornish-Fisher expansion up to order O(n−1). Under nonnormality Boik (1998, Equa-
tion (19)) provided the asymptotic bias of the sample correlation using matrix expression
while Ogasawara (2004, Equation (A11)) gave the corresponding elementwise expression.
Kollo and Ruul (2003, Theorem 4) derived the multivariate Edgeworth expansion of the
vectorized sample correlation matrix up to order O(n−1/2) using the matrix expression of
partial derivatives. Nakagawa and Niki (1992), and Ogasawara (2006a) derived the Edge-
worth expansion of the sample correlation with different expressions up to order O(n−1)
under nonnormality. Boik and Haaland (2006) gave the similar expansion and that of
the Studentized estimator up to order O(n−1/2) using the matrix expression of partial
derivatives.

References for the distribution of the sample partial correlation are sparse. It is known
that under normality the distribution of the sample partial correlation reduces to that of
the sample simple correlation with adjustment for degrees of freedom (Fisher, 1924; see
also Anderson, 2003, Theorem 4.3.5; Muirhead, 1982, Theorem 5.3.1). To the author’s
knowledge, the asymptotic distribution of the sample partial correlation under nonnor-
mality was first given by Steiger and Browne (1984) using the normal approximation with
the asymptotic variance for the sample simple correlation between weighted sums of vari-
ables under nonnormality. Boik and Haaland (2006) gave the Edgeworth expansion of the
sample partial correlation up to order O(n−1/2). For the sample semipartial and bipar-
tial correlations, the asymptotic distributions are not available. However, the test of the
hypothesis of zero semipartial correlation is available using the proportional relationship
between the semipartial correlation and the corresponding partial correlation (see e.g.,
van den Burg & Lewis, 1990, Equation (4)).

The purpose of this article is to give the asymptotic expansions of the distributions of
the sample coefficients of various types of partial correlations including the generalized
one shown in the next section up to order O(n−1) and the corresponding expansions for
the Studentized estimators up to order O(n−1/2). Simulations will also be carried out to
see the usefulness of the asymptotic expansions in finite samples.

2. Generalized partial correlation

Lee (1978) extended the bipartial correlation to the case with common and unique
variables to be partialed out. Let xi (i = 1, . . . , 5) be the pi × 1 random vectors with
cov(xi,x′

j)=Σi j (pi×pj) and cov(xi)=Σii (pi×pi). Let x1·34 = x1−Σ1,34Σ−1
34,34(x

′
3,x

′
4)′

and x2·35 = x2 −Σ2,35Σ−1
35,35(x

′
3,x

′
5)

′, where Σ1,34 = cov(x1, (x′
3,x

′
4))(p1 × (p3 + p4)) and
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Σ34,34 = cov((x′
3,x

′
4)′)((p3 + p4) × (p3 + p4)) with the assumption of positive definite

Σ34,34 and Σ35,35. That is, the variables in x3 are partialed out from both x1 and x2

while those in x4 and x5 are partialed out only from x1 and x2, respectively.
Lee (1978) defined the g1- and g2-bipartial correlations in the context of canonical cor-

relation analysis for x1·34 and x2·35. In his definition, the g1-bipartial correlation is for
the case with x3 uncorrelated with x4 and x5, while the g2-bipartial correlation is defined
when x3 is correlated with x4 and x5. In this article, the generalized partial correlation,
denoted by ρ1 i·34,2j ·35 (i = 1, . . . , p1; j = 1, . . . , p2), is defined irrespective of x3 being
uncorrelated or correlated with x4 and x5:

ρ1i·34,2j ·35 = (Σ1·34,2·35)ij/{(Σ11·34)ii(Σ22·35)jj}1/2 (i = 1, . . . , p1; j = 1, . . . , p2),
(2.1)

where (·)ij denotes the (i, j)th element of the argument matrix and

cov(x1·34,x′
2·35) = Σ1·34,2·35, cov(x1·34) = Σ1·34,1·34 ≡ Σ11·34, cov(x2·35) = Σ22·35.

(2.2)
The actual expressions of the partial covariance matrices of (2.2) are

Σ1·34,2·35 = Σ12 − Σ1,34Σ−1
34,34Σ34,2 − Σ1,35Σ−1

35,35Σ35,2 + Σ1,34Σ−1
34,34Σ34,35Σ−1

35,35Σ35,2,

Σ11·34 = Σ11 − Σ1,34Σ−1
34,34Σ34,1, Σ22·35 = Σ22 − Σ2,35Σ−1

35,35Σ35,2. (2.3)

It is easy to find that the simple, partial, semipartial and bipartial correlations are special
cases of the generalized partial correlation of (2.1) when some or all of x3, x4 and x5 are
null. The estimator of ρ1 i·34,2j ·35 is given by replacing Σij ’s in (2.3) by the corresponding
pi × pj unbiased sample covariance matrices (Sij ’s) with the sample counterparts of (2.1)
and (2.2).

3. Asymptotic expansion of the distribution of the sample generalized
partial correlation

For simplicity of notation, rewrite (2.1) by the generic expression:

θ = ψ3/
√
ψ1ψ2. (3.1)

That is, θ denotes a generalized partial correlation while ψ1, ψ2 and ψ3 are corresponding
partial variances and covariance. Recall that other types of (partial) correlations shown
earlier are given as special cases of (3.1). Assume that the estimator θ̂ of θ is expanded
about the true θ by the Taylor series up to the term of the third derivatives with respect
to sample variances and covariances of associated observed variables, i.e. s = v(S), where
S is the p × p sample unbiased covariance matrix with p = 2 + p3 + p4 + p5 based on N

observations for the random vector (X1i
, X2j

,x′
3,x

′
4,x

′
5)′, Xkl

= (xk)l, (·)l is the l-th ele-
ment of the argument vector, and v(·) is the vectorizing operator taking the nonduplicated
elements of a symmetric matrix.

Then, with the assumption of the existence of the finite moments of the observed vari-
ables up to a required order, the cumulants of w = n1/2(θ̂− θ) up to the fourth order are
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given as
κ1(w) = E(w) = n−1/2α1 + o(n−1/2),

κ2(w) = E[{w − E(w)}2] = α2 + n−1∆α2 + o(n−1),

κ3(w) = E[{w − E(w)}3] = n−1/2α3 + o(n−1/2),

κ4(w) = E[{w − E(w)}4] − 3{κ2(w)}2 = n−1α4 + o(n−1),

(3.2)

where n−1/2α1, α2, n−1/2α3 and n−1α4 are the asymptotic cumulants of w up to the
fourth order, n−1∆α2 is the added higher-order asymptotic variance of w (see Fujikoshi,
1980; Ogasawara, 2006a). It is known that α1, . . . , α4 and ∆α2 are given as functions of
two sets of arguments. The first set is given by the partial derivatives of θ̂ with respect to
s up to the third order evaluated at σ = v(Σ), where Σ is the population counterpart of
S. The second set corresponds to the cumulants or moments of the associated observed
variables up to the eighth-order. That is, e.g.,

α1 =
1
2
tr
(

∂2θ

∂σ∂σ′Ω
)
, α2 =

∂θ

∂σ′Ω
∂θ

∂σ
, (3.3)

where Ω = n acov(s) is the p∗ × p∗ matrix with p∗ = p(p + 1)/2; acov(·) denotes the
asymptotic covariance matrix of order O(n−1) for the argument vector of estimators,

(Ω)ab,cd = σabcd − σabσcd (p ≥ a ≥ b ≥ 1; p ≥ c ≥ d ≥ 1), (3.4)

where the double subscript notation for the (a, b)th row and (c, d)th column is used; σabcd

is the fourth multivariate central moment of the variablesXa, Xb, Xc andXd; σab = (Σ)ab;
and ∂θ/∂σ = ∂θ̂/∂s|s=σ with other similar expressions for simplicity of notation. The
remaining expressions for α3, α4 and ∆α2 are available (e.g., Ogasawara, 2006a, Section 3;
2006b, Equation (3.4)) but are not repeated here since they are involved.

When the moments or cumulants of the p observed variables up to the eighth order are
available, the remaining task to obtain α1 to α4 and ∆α2 in (3.2) is to derive the partial
derivatives of θ̂ with respect to s up to the third order, which is given in two steps. In
the first step, the partial derivatives of θ̂ with respect to ψ̂i’s are derived. Then, in the
second step, the partial derivatives of ψ̂i’s with respect to s are obtained. The results will
be given in the appendix.

Approximations to the distribution function of w by the Edgeworth expansion are given
by

Pr

(
w

α
1/2
2

≤ z

)
= Φ(z) − n−1/2

{
α1

α
1/2
2

+
α3

6α3/2
2

(z2 − 1)

}
φ(z) − n−1

{
1
2
(∆α2 + α2

1)
z

α2

+
(α4

24
+
α1α3

6

) z3 − 3z
α2

2

+
α2

3(z5 − 10z3 + 15z)
72α3

2

}
φ(z) + o(n−1)

(3.5)

(Ogasawara, 2006a), where φ(z) = (1/
√

2π) exp(−z2/2) and Φ(z) =
∫ z

−∞ φ(t)dt. The first
term Φ(z) on the right-hand side of (3.5) gives the usual normal approximation. The
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approximation up to the term of order O(n−1/2) in (3.5) is the single-term Edgeworth
expansion. The approximation up to the term of order O(n−1) in (3.5) is the two-term
Edgeworth expansion. It is known that the approximations to the distribution functions
by the Edgeworth expansions can be locally decreasing. Hall’s (1992) method using vari-
able transformation is free from this phenomenon though the approximation is of the same
order as the single-term Edgeworth expansion:

Pr

(
w

α
1/2
2

≤ z

)
= Φ{g(z)} + o(n−1/2), (3.6)

g(z) =
2n1/2α

3/2
2

α3

⎡
⎣{n−1/2α3

6α3/2
2

(
z − n−1/2α1

α
1/2
2

)
− 1

}3

− 1

⎤
⎦ .

In (3.5) and (3.6), the standardized statistic w/α1/2
2 includes the population value α2,

which is unavailable in practice, while the Studentized or pivotal statistic is available:

t =
n1/2(θ̂ − θ)

α̂
1/2
2

=
w

α̂
1/2
2

, (3.7)

whose cumulants up to the third order are

κ1(t) = n−1/2α′
1 +O(n−1), κ2(t) = 1 +O(n−1), κ3(t) = n−1/2α′

3 +O(n−3/2), (3.8)

where

α′
1 = α

−1/2
2 α1 − 1

2
α
−3/2
2

{
∂θ

∂σ′Ω
∂α2

∂σ
+

∂θ

∂σ′n acov(s, s′(4))
∂α2

∂σ(4)

}
,

α′
3 = α

−3/2
2 α3 − 3α−3/2

2

{
∂θ

∂σ′Ω
∂α2

∂ σ
+

∂θ

∂ σ′n acov(s, s′(4))
∂α2

∂ σ(4)

}
,

(3.9)

where s(4) is the p+3C4 × 1 vector of the nonduplicated sample multivariate fourth mo-
ments, σ(4) is its population counterpart, and acov(s, s′(4)) is the p∗ × p+3C4 asymptotic
covariance matrix of order O(n−1) (Ogasawara, 2007).

Let zα̃ = Φ−1(1− α̃) (e.g., α̃ = .05). Then, the confidence interval with the asymptotic
confidence coefficient 1−α̃ accurate up to order O(n−1/2) by the Cornish-Fisher expansion
is

θ̂ + [±zα̃/2 − n−1/2{α̂′
1 + (α̂′

3/6)(z2
α̃/2 − 1)}]n−1/2α̂

1/2
2 . (3.10)

The adjusted Cornish-Fisher expansion gives

θ̂ ± zα̃/2 exp[∓n−1/2{α̂′
1 + (α̂′

3/6)(z2
α̃/2 − 1)}/zα̃/2]n−1/2α̂

1/2
2 (3.11)

with the corresponding double signs, where we find that the terms ±zα̃/2 exp[ · ]n−1/2α̂
1/2
2

have the same signs as those by the normal approximation (the author is indebted to
an anonymous reviewer for this adjustment). The confidence interval by Hall’s (1992)
method corresponding to (3.10) is

θ̂ − n−1α̂
1/2
2 α̂′

1 + 6α̂1/2
2 (α̂′

3)
−1[{1 − (1/2)α̂′

3(±n−1/2zα̃/2 − (n−1/6)α̂′
3)}1/3 − 1]. (3.12)
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Under normality, (3.9) becomes somewhat simplified:

α′
NT1 = α

−1/2
NT2 αNT1 − 1

2
α
−3/2
NT2

∂θ

∂σ′ΩNT
∂αNT2

∂σ
,

α′
NT3 = α

−3/2
NT2 αNT3 − 3α−3/2

NT2

∂θ

∂σ′ΩNT
∂αNT2

∂σ
,

(3.13)

where the subscript NT denotes that the subscripted value is given under normality, and
(ΩNT)ab,cd = σacσbd+σadσbc. In practice, the normal-theory Studentized statistic w/α̂1/2

NT2

tends to be used inappropriately under nonnormality. In such a case, it is known that
(3.9) becomes

α′′
NT1 = α

−1/2
NT2 α1 − 1

2
α
−3/2
NT2

∂θ

∂σ′Ω
∂αNT2

∂σ
, α′′

NT2 = α−1
NT2α2,

α′′
NT3 = α

−3/2
NT2 α3 − 3α−5/2

NT2 α2
∂θ

∂σ′Ω
∂αNT2

∂σ

(3.14)

(Ogasawara, 2007).

4. A numerical example

An artificial data set using the following 5 × 5 population covariance matrix with unit
variances is used for illustration:

Σ =

⎡
⎢⎢⎢⎢⎢⎣

1.00
.64 1.00 symmetric
.48 .48 1.00
.24 .24 .24 1.00
.24 .24 .24 .16 1.00

⎤
⎥⎥⎥⎥⎥⎦ , (4.1)

where each xi (i = 1, . . . , 5) consists of a single variable. The five types of correlation coef-
ficients, ρ12 (simple), ρ12·3 (partial), ρ1·34,2·3 (semipartial), ρ1·4,2·5 (bipartial) and ρ1·34,2·35
(generalized), are considered, where ρ1·34,2·3 is somewhat different from the usual semi-
partial correlation since ρ1·34,2·3 is a semipartial correlation between X1·3 and X2·3 with
X4 being partialed out only from X1·3.

Simulations were carried out under normality and nonnormality with the sample sizes
N = 50, 200 and 400. Nonnormal observations were generated by x = Σ1/2f , where Σ1/2

is a Cholesky-decomposed lower-triangular matrix with Σ = Σ1/2Σ1/2′, and each element
of f is independently chi-square distributed with 1 degree of freedom with standardization
to have unit variance. From the generated observations, the five sample correlation coef-
ficients were estimated. This was repeated 1,000,000 times. From the 1,000,000 estimates
for each correlation coefficient, the k-statistics (unbiased estimators of cumulants) were
obtained with multiplication of appropriate powers of n for ease of comparison to the
asymptotic values independent of n.

Table 1 shows the population coefficients, and the asymptotic and simulated cumulants
of their estimators. The simulated α

1/2
2 , α1 and α3 are reasonably similar to their cor-

responding asymptotic values even when N is as small as 50 while the absolute values
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of simulated α4 under nonnormality are smaller than the corresponding asymptotic val-
ues though the tendency of the simulated values approaching the asymptotic values with
the increase of N is observed. It is seen that the nonnormal cases give larger absolute
cumulants than the normal ones, which may be partially explained by the large positive
kurtosis of the chi-square distribution with 1 degree of freedom.

Table 2 gives the results of the standard error ratios. In HASE/ASE, HASE =
{(α2/n) + (∆α2/n

2)}1/2 is the higher-order asymptotic standard error, and ASE =
(α2/n)1/2 is the usual asymptotic standard error while in SD/ASE, SD is the true or
simulated standard error given by the square root of the unbiased sample variance based
on 1,000,000 estimates for each correlation coefficient. From the table, it is found that
under normality, HASE gives values closer to the true ones than ASE while under non-
normality HASE gives somewhat extreme values when N = 50.

Table 3 shows the results of the normal-theory Studentized estimators under normal-
ity and nonnormality. The simulated values with relatively large sample sizes are close
to their asymptotic values. It is of interest to find that the signs of the first and third
cumulants in Table 3 are positive while they are negative in Table 1.

Table 4 gives the similar results based on Studentized estimates using the asymptot-
ically distribution-free (ADF) theory (see (3.7) with (3.9)) under nonnormality. For the
sample asymptotic standard errors, the sample fourth moments of observable variables
were used as well as the usual unbiased sample variances and covariances. The number of
replications in the simulations was reduced to 100,000 to save computation time. Table 4
shows that when N = 50, the simulated standard deviations of the Studentized estimates
are substantially larger than the unit asymptotic values (compare the corresponding re-
sults in Table 3).

Table 5 illustrates the accuracy of confidence intervals using sample cumulants in the
case of ρ1·34,2·35 under normality and under nonnormality. The first half of the table is
based on the Studentized estimates using normal theory under normality while the sec-
ond half of the table is given by the Studentized estimates based on the ADF theory
under nonnormality. The proportions of the true values below the lower endpoints of
confidence intervals are shown with the number of replications being 100,000. In Table 5,
three methods are compared: N* (the usual normal approximation), A.C-F (the adjusted
Cornish-Fisher expansion) and Hall (Hall’s method using variable transformation). The
confidence interval by A.C-F when z.5 = 0 in Table 5 is defined by θ̂ ± 0 (see (3.11)). It
is seen that A.C-F and Hall improve over N* though N* shows reasonable results in the
endpoints with nominal values .9 to .995 under normality. Among the two methods, Hall
seems to give results slightly closer to the corresponding nominal values than A.C-F in
these data.

Table 6 gives 105× root mean square errors with respect to the distribution functions
of the standardized estimators approximated by N*, E1 (the single-term Edgeworth ex-
pansion), E2 (the two-term Edgeworth expansion) and Hall’s method, where the true
values are given by the simulations used in Table 1 and the asymptotic values are given
using the population asymptotic cumulants (see (3.4) and (3.5)). Errors are defined as the
approximated values minus the corresponding true values at the 40 standardized points,
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Table 1: Simulated and theoretical cumulants of the non-Studentized estimators

Correlation α
1/2
2 (dispersion) α1(bias) α3(skewness) α4(kurtosis)

coefficient N Normal C1 Normal C1 Normal C1 Normal C1

Simple 50 .60 1.00 −.20 −.39 −.85 −3.38 3.1 −1.7
ρ12 200 .59 1.06 −.20 −.43 −.81 −4.54 2.9 −.9
= .640 400 .59 1.08 −.18 −.45 −.79 −4.86 3.2 −1.2

Th. .59 1.10 −.19 −.45 −.79 −5.26 2.9 12.2

Partial 50 .74 1.21 −.20 −.94 −1.27 −5.88 4.0 10.3
ρ12·3 200 .72 1.25 −.20 −1.05 −1.17 −7.18 3.7 17.8
= .532 400 .72 1.26 −.20 −1.08 −1.16 −7.49 3.5 21.7

Th. .72 1.28 −.19 −1.10 −1.18 −8.37 3.8 46.9

Semipartial 50 .75 1.20 −.46 −1.30 −1.24 −5.48 3.5 7.5
ρ1·34,2·3 200 .73 1.24 −.43 −1.41 −1.16 −7.06 3.4 15.7
= .516 400 .73 1.26 −.43 −1.42 −1.18 −7.56 2.9 22.0

Th. .73 1.27 −.44 −1.45 −1.16 −8.29 3.4 46.6

Bipartial 50 .68 1.02 −.70 −1.45 −.94 −3.17 2.4 −1.0
ρ1·4,2·5 200 .67 1.06 −.69 −1.59 −.89 −4.56 2.2 5.0
= .567 400 .67 1.08 −.68 −1.61 −.90 −4.95 1.9 8.5

Th. .66 1.09 −.69 −1.63 −.90 −5.53 2.5 21.0

Generalized 50 .76 1.20 −.68 −1.57 −1.25 −5.13 3.4 3.8
ρ1·34,2·35 200 .74 1.24 −.65 −1.66 −1.17 −6.77 3.3 13.0
= .502 400 .74 1.25 −.66 −1.70 −1.15 −7.36 3.4 20.7

Th. .74 1.27 −.66 −1.76 −1.16 −8.20 3.2 47.0

Note. N = The sample size in the simulation, Th. = Theoretical or asymptotic values,
Normal = Normally distributed data, C1 = Chi-square distributed data with 1 degree
of freedom.

−3.8,−3.6, . . . , 4.0. The mean square was taken over the 40 points. In the table, E1, E2
and Hall have errors smaller than N* and, as a whole, E2 has errors smaller than E1 and
Hall while in some cases E2 gives errors larger than E1 and Hall.

5. Multivariate cases

The generalized partial correlation (covariance) was initially introduced by Lee (1978)
in multivariate form as in (2.3). In this article, the overall or set-correlation indexes be-
tween x1·34 and x2·35 are considered (for set correlation see Cramer & Nicewander, 1979;
Cohen, 1982; van den burg & Lewis, 1988; Cohen, Cohen, West & Aiken, 2003, Chap-
ter 16). One of the basic overall indexes was given by Hotelling (1936, Equation (1.1))
based on Wilks (1932):

ρ2
M1 ≡ 1 − |Ψ|

|Ψ11||Ψ22| , (5.1)

where, in the current case, Ψ =
[
Ψ11 Ψ12
Ψ21 Ψ22

]
, Ψ11 = Σ11·34, Ψ22 = Σ22·35, Ψ12 = Σ1·34,2·35

and Ψ21 = Ψ′
12 (see (2.3)). Note that (5.1), in form, is equal to Rozeboom’s (1965)

between-set correlation and gives 1 −∏q
i=1 (1 − λ2

i ), where λi is the i-th canonical corre-
lation between x1·34 and x2·35 and q = min(p1, p2).
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Table 2: Simulated and theoretical standard error ratios of the non-Studentized estimators

Correlation Normal C1

coefficient N SD/ASE HASE/ASE SD/ASE HASE/ASE

Simple 50 1.023 1.023 .910 .816
ρ12 200 1.006 1.006 .967 .958

400 1.002 1.003 .981 .979

Partial 50 1.026 1.026 .947 .870
ρ12·3 200 1.006 1.006 .978 .970

400 1.003 1.003 .989 .985

Semipartial 50 1.031 1.030 .943 .865
ρ1·34,2·3 200 1.008 1.007 .977 .968

400 1.004 1.004 .987 .984

Bipartial 50 1.027 1.027 .937 .856
ρ1·4,2·5 200 1.006 1.007 .976 .967

400 1.004 1.003 .987 .983

Generalized 50 1.035 1.034 .942 .865
ρ1·34,2·35 200 1.009 1.008 .976 .969

400 1.004 1.004 .986 .984

Note. N = The sample size in the simulation and the theoretical ratio
(HASE/ASE), SD = The standard deviation from the simulation, HASE =

{(α2/n)+(∆α2/n2)}1/2 with n = N −1, ASE = (α2/n)1/2, Normal = Normally
distributed data, C1 = Chi-square distributed data with 1 degree of freedom.

Another basic overall index is

ρ2
M2 ≡ c−1tr(Ψ−1

11 Ψ12Ψ−1
22 Ψ21), (5.2)

where c is a constant. Cramer and Nicewander (1979, Equation (28)) and Takeuchi,
Yanai and Mukherjee (1982, Equation (6.68)) used c = q. Hooper (1959, 1962) used
c = pi (i = 1, 2) when xi is a set of criterion variables and x3−i is a set of explanatory
variables. Equation (5.2) is equal to c−1

∑q
i=1 λ

2
i .

The sample values of (5.1) and (5.2) are given by replacing Ψ with its sample coun-
terpart. The asymptotic expansions of the distributions of ρ̂2

M1 and ρ̂2
M2 are available

when the partial derivatives with respect to sab’s are provided, which will be given in the
appendix.

Appendix. The partial derivatives

The following partial derivatives are those evaluated at the population values.

A. The partial derivatives of θ̂ with respect to s

A.1 The recursive expressions of the partial derivatives of θ̂ with respect to s

∂θ

∂σab
=

3∑
i=1

∂θ

∂ψi

∂ψi

∂σab
,

∂2θ

∂σab∂σcd
=

3∑
i=1

⎛
⎝ 3∑

j=1

∂2θ

∂ψi∂ψj

∂ψi

∂σab

∂ψj

∂σcd
+

∂θ

∂ψi

∂2ψi

∂σab∂σcd

)
,
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Table 3: Simulated and theoretical cumulants of the normal-theory Studentized estimators

Correlation α
1/2
NT2

′ α
1/2
NT2

′′ α′
NT1 α′′

NT1 α′
NT3 α′′

NT3

coefficient N Normal C1 Normal C1 Normal C1

50 1.08 2.37 1.01 3.87 5.5 205.0
Simple 200 1.02 1.96 .97 3.67 4.2 85.1
ρ12 400 1.01 1.90 .99 3.63 4.1 74.5

Th. 1 1.86 .96 3.67 3.8 66.3

50 1.09 2.10 .86 2.03 4.8 98.3
Partial 200 1.02 1.84 .81 1.85 3.6 50.7
ρ12·3 400 1.01 1.81 .80 1.84 3.4 46.8

Th. 1 1.78 .80 1.85 3.2 41.5

50 1.08 1.92 .40 .96 4.0 53.5
Semipartial 200 1.02 1.78 .41 1.02 3.2 39.1
ρ1·34,2·3 400 1.01 1.77 .41 1.08 3.0 37.6

Th. 1 1.75 .39 1.11 3.0 35.6

50 1.06 1.65 −.12 −.12 3.2 22.2
Bipartial 200 1.02 1.63 −.08 .05 2.9 22.2
ρ1·4,2·5 400 1.01 1.63 −.07 .13 2.8 23.3

Th. 1 1.64 −.08 .22 2.7 24.3

50 1.08 1.82 .02 .23 3.5 36.9
Generalized 200 1.02 1.74 .06 .44 3.0 32.5
ρ1·34,2·35 400 1.01 1.73 .05 .46 2.9 31.5

Th. 1 1.72 .04 .48 2.8 30.7

Note. N = The sample size in the simulation, Th. = Theoretical or
asymptotic values, Normal = Normally distributed data, C1 = Chi-
square distributed data with 1 degree of freedom.

∂3θ

∂σab∂σcd∂σef
=

3∑
i=1

⎧⎨
⎩

3∑
j=1

(
3∑

k=1

∂3θ

∂ψi∂ψj∂ψk

∂ψi

∂σab

∂ψj

∂σcd

∂ψk

∂σef

+
3∑ ∂2θ

∂ψi∂ψj

∂ψi

∂σab

∂2ψj

∂σcd∂σef

)
+

∂θ

∂ψi

∂3ψi

∂σab∂σcd∂σef

}

(p ≥ a ≥ b ≥ 1; p ≥ c ≥ d ≥ 1; p ≥ e ≥ f ≥ 1),

where
∑kdenotes the sum of k terms with similar patterns.

A.2 The partial derivatives of θ̂ with respect to ψ̂i’ s

∂θ

∂(ψ1, ψ2, ψ3)
=
(
−1

2
ψ
−3/2
1 ψ

−1/2
2 ψ3,−1

2
ψ
−1/2
1 ψ

−3/2
2 ψ3, (ψ1ψ2)−1/2

)
,

∂2θ

∂ψ2
1

=
3
4
ψ
−5/2
1 ψ

−1/2
2 ψ3,

∂2θ

∂ψ2∂ψ1
=

1
4
ψ
−3/2
1 ψ

−3/2
2 ψ3,

∂2θ

∂ψ2
2

=
3
4
ψ
−1/2
1 ψ

−5/2
2 ψ3,

∂2θ

∂ψ3∂ψ1
= −1

2
ψ
−3/2
1 ψ

−1/2
2 ,

∂2θ

∂ψ3∂ψ2
= −1

2
ψ
−1/2
1 ψ

−3/2
2 ,

∂2θ

∂ψ2
3

= 0,

∂3θ

∂ψ3
1

= −15
8
ψ
−7/2
1 ψ

−1/2
2 ψ3,

∂3θ

∂ψ2∂ψ2
1

= −3
8
ψ
−5/2
1 ψ

−3/2
2 ψ3,
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Table 4: Simulated and theoretical cumulants of the ADF-theory Studentized estimators

Correlation C1

coefficient N α
1/2
2

′ α′
1 α′

3

50 1.69 1.72 44.1
Simple 200 1.19 1.11 8.7
ρ12 400 1.10 .99 6.1

Th. 1 .92 4.0

50 1.62 1.16 37.9
Partial 200 1.19 .96 11.3
ρ12·3 400 1.10 1.00 9.2

Th. 1 1.14 7.9

50 1.59 .61 30.6
Semipartial 200 1.18 .55 11.6
ρ1·34,2·3 400 1.10 .64 8.8

Th. 1 .92 8.3

50 1.49 −.14 18.3
Bipartial 200 1.17 .09 10.1
ρ1·4,2·5 400 1.10 .21 8.1

Th. 1 .48 7.6

50 1.57 .22 27.1
Generalized 200 1.19 .40 11.1
ρ1·34,2·35 400 1.10 .49 9.1

Th. 1 .71 8.6

Note. N = The sample size in the simulation, Th. =
Theoretical or asymptotic values, C1 = Chi-square
distributed data with 1 degree of freedom.

∂3θ

∂ψ2
2∂ψ1

= −3
8
ψ
−3/2
1 ψ

−5/2
2 ψ3,

∂3θ

∂ψ3
2

= −15
8
ψ
−1/2
1 ψ

−7/2
2 ψ3,

∂3θ

∂ψ3∂ψ2
1

=
3
4
ψ
−5/2
1 ψ

−1/2
2 ,

∂3θ

∂ψ3∂ψ2∂ψ1
=

1
4
ψ
−3/2
1 ψ

−3/2
2 ,

∂3θ

∂ψ3∂ψ2
2

=
3
4
ψ
−1/2
1 ψ

−5/2
2 ,

∂3θ

∂ψ2
3∂ψ1

=
∂3θ

∂ψ2
3∂ψ2

=
∂3θ

∂ψ3
3

= 0.

A.3 The partial derivatives of ψ̂i’ s with respect to s

Let σ34,1 = cov((x′
3,x

′
4)

′, X1i
), σ35,2 = cov((x′

3,x
′
5)

′, X2j
),

σ11 = var(X1i
), σ12 = cov(X1i

, X2j
), σ22 = var(X2j

) (i = 1, . . . , p1; j = 1, . . . , p2),
ψ1 = ψ1A − ψ1B ≡ σ11 − σ′

34,1Σ
−1
34,34σ34,1, ψ2 = ψ2A − ψ2B ≡ σ22 − σ′

35,2Σ
−1
35,35σ35,2,

ψ3 = ψ3A − ψ3B − ψ3C + ψ3D

≡ σ12 − σ′
34,1Σ

−1
34,34σ34,2 − σ′

35,1Σ
−1
35,35σ35,2 + σ′

34,1Σ
−1
34,34Σ34,35Σ−1

35,35σ35,2,

where the subscripts i and j are temporarily suppressed in e.g., σ12 for simplicity of nota-
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Table 5: Simulated proportions below the lower endpoints of the confidence intervals for ρ1·34,2·35

Nominal values

N Method .0050 .0250 .1000 .5000 .9000 .9750 .9950

Based on the normal-theory Studentized estimates under normality

N* .0166 .0441 .1166 .4779 .8950 .9756 .9953
50 A.C-F .0071 .0320 .1114 .4779 .8882 .9699 .9936

Hall .0037 .0280 .1108 .5001 .8885 .9702 .9937

N* .0099 .0320 .1052 .4909 .9007 .9786 .9962
200 A.C-F .0059 .0263 .1014 .4909 .8965 .9742 .9945

Hall .0054 .0257 .1013 .5024 .8965 .9744 .9946

N* .0075 .0298 .1045 .4920 .9019 .9782 .9964
400 A.C-F .0050 .0253 .1021 .4920 .8991 .9751 .9950

Hall .0048 .0250 .1020 .5003 .8991 .9752 .9951

Based on the ADF-theory Studentized estimates under nonnormality
(chi-square distributed data with 1 degree of freedom)

N* .0605 .0994 .1744 .4590 .8244 .9304 .9736
50 A.C-F .0367 .0814 .1739 .4590 .8312 .9338 .9756

Hall .0180 .0626 .1722 .4910 .8305 .9350 .9771

N* .0268 .0595 .1380 .4804 .8808 .9681 .9925
200 A.C-F .0176 .0510 .1386 .4804 .8759 .9618 .9896

Hall .0146 .0485 .1383 .5030 .8758 .9622 .9900

N* .0177 .0479 .1262 .4878 .8920 .9734 .9949
400 A.C-F .0128 .0417 .1261 .4878 .8852 .9662 .9914

Hall .0118 .0407 .1260 .5051 .8849 .9667 .9919

Note. N = The sample size in the simulation, N*=Normal approximation,
A.C-F = The adjusted Cornish-Fisher expansion, Hall = Hall’s method
by variable transformation.

tion. Then, the nonzero partial derivatives of ψ̂1A through ψ̂3D with respect to sab’s are
as follows:

∂ψ1A

∂σ11
= 1,

∂ψ1B

∂σab
=
∂σ′

34,1

∂σab
Σ−1

34,34σ34,1 + σ′
34,1

∂Σ−1
34,34

∂σab
σ34,1 + σ′

34,1Σ
−1
34,34

∂σ34,1

∂σab

≡
3∑ ∂σ′

34,1

∂σab
Σ−1

34,34σ34,1,

∂ψ2A

∂σ22
= 1,

∂ψ2B

∂σab
=

3∑ ∂σ′
35,2

∂σab
Σ−1

35,35σ35,2,
∂ψ3A

∂σ21
= 1,

∂ψ3B

∂σab
=

3∑ ∂σ′
34,1

∂σab
Σ−1

34,34σ34,2,

∂ψ3C

∂σab
=

3∑ ∂σ′
35,1

∂σab
Σ−1

35,35σ35,2,
∂ψ3D

∂σab
=

5∑ ∂σ′
34,1

∂σab
Σ−1

34,34Σ34,35Σ−1
35,35σ35,2,
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Table 6: 105×Root mean square errors of the asymptotic distribution functions of the standard-
ized estimators

Correlation Normal Chi-square with 1 degree of freedom

coefficient N* E1 E2 Hall N* E1 E2 Hall

N = 50
ρ12 1226 170 47 200 1748 1238 1123 1244
ρ12·3 1056 228 36 266 1887 821 1116 828
ρ1·34,2·3 1410 282 50 333 2486 858 1169 858
ρ1·4,2·5 2346 271 34 296 3277 920 1231 946
ρ1·34,2·35 2043 361 51 397 3017 862 1200 878

N = 200
ρ12 614 44 20 49 756 428 143 429
ρ12·3 496 55 24 62 962 309 164 302
ρ1·34,2·3 663 69 11 82 1273 326 172 319
ρ1·4,2·5 1143 67 14 74 1690 337 179 335
ρ1·34,2·35 970 94 34 103 1515 332 175 328

N = 400
ρ12 419 32 29 27 502 237 50 237
ρ12·3 353 31 13 36 675 168 76 163
ρ1·34,2·3 466 44 20 53 882 181 67 176
ρ1·4,2·5 803 44 21 52 1182 181 77 181
ρ1·34,2·35 690 45 15 48 1080 208 48 202

Note. N = The sample size in the simulation, N* = Normal approximation, E1 = The
single-term Edgeworth expansion, E2 = The two-term Edgeworth expansion, Hall =
Hall’s method by variable transformation.

∂2ψ1B

∂σab∂σcd
=

6∑ ∂σ′
34,1

∂σab

∂Σ−1
34,34

∂σcd
σ34,1 + σ′

34,1

∂2Σ−1
34,34

∂σab∂σcd
σ34,1,

∂2ψ2B

∂σab∂σcd
=

6∑ ∂σ′
35,2

∂σab

∂Σ−1
35,35

∂σcd
σ35,2 + σ′

35,2

∂2Σ−1
35,35

∂σab∂σcd
σ35,2,

∂2ψ3B

∂σab∂σcd
=

6∑ ∂σ′
34,1

∂σab

∂Σ−1
34,34

∂σcd
σ34,2 + σ′

34,1

∂2Σ−1
34,34

∂σab∂σcd
σ34,2,

∂2ψ3C

∂σab∂σcd
=

6∑ ∂σ′
35,1

∂σab

∂Σ−1
35,35

∂σcd
σ35,2 + σ′

35,1

∂2Σ−1
35,35

∂σab∂σcd
σ35,2,

∂2ψ3D

∂σab∂σcd
=

5P2=20∑ ∂σ′
34,1

∂σab

∂Σ−1
34,34

∂σcd
Σ34,35Σ−1

35,35σ35,2

+ σ′
34,1

∂2Σ−1
34,34

∂σab∂σcd
Σ34,35Σ−1

35,35σ35,2 + σ′
34,1Σ

−1
34,34Σ34,35

∂2Σ−1
35,35

∂σab∂σcd
σ35,2,

∂3ψ1B

∂σab∂σcd∂σef
=

6∑ ∂σ′
34,1

∂σab

∂Σ−1
34,34

∂σcd

∂σ34,1

∂σef
+

6∑ ∂σ′
34,1

∂σab

∂2Σ−1
34,34

∂σcd∂σef
σ34,1

+σ′
34,1

∂3Σ−1
34,34

∂σab∂σcd∂σef
σ34,1,
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∂3ψ2B

∂σab∂σcd∂σef
=

6∑ ∂σ′
35,2

∂σab

∂Σ−1
35,35

∂σcd

∂σ35,2

∂σef
+

6∑ ∂σ′
35,2

∂σab

∂2Σ−1
35,35

∂σcd∂σef
σ35,2

+σ′
35,2

∂3Σ−1
35,35

∂σab∂σcd∂σef
σ35,2,

∂3ψ3B

∂σab∂σcd∂σef
=

6∑ ∂σ′
34,1

∂σab

∂Σ−1
34,34

∂σcd

∂σ34,2

∂σef
+

6∑ ∂σ′
34,1

∂σab

∂2Σ−1
34,34

∂σcd∂σef
σ34,2

+σ′
34,1

∂3Σ−1
34,34

∂σab∂σcd∂σef
σ34,2,

∂3ψ3C

∂σab∂σcd∂σef
=

6∑ ∂σ′
35,1

∂σab

∂Σ−1
35,35

∂σcd

∂σ35,2

∂σef
+

6∑ ∂σ′
35,1

∂σab

∂2Σ−1
35,35

∂σcd∂σef
σ35,2

+ σ′
35,1

∂3Σ−1
35,35

∂σab∂σcd∂σef
σ35,2,

∂3ψ3D

∂σab∂σcd∂σef
=

5P3=60∑ ∂σ′
34,1

∂σab

∂Σ−1
34,34

∂σcd

∂Σ34,35

∂σef
Σ−1

35,35σ35,2

+
12∑(

∂σ′
34,1

∂σab

∂2Σ−1
34,34

∂σcd∂σef
Σ34,35Σ−1

35,35σ35,2

+
∂σ′

34,1

∂σab
Σ−1

34,34Σ34,35

∂2Σ−1
35,35

∂σcd∂σef
σ35,2

)

+ σ′
34,1

∂3Σ−1
34,34

∂σab∂σcd∂σef
Σ34,35Σ−1

35,35σ35,2

+ σ′
34,1Σ

−1
34,34Σ34,35

∂3Σ−1
35,35

∂σab∂σcd∂σef
σ35,2

(p ≥ a ≥ b ≥ 1; p ≥ c ≥ d ≥ 1; p ≥ e ≥ f ≥ 1).

The nonzero partial derivatives of σ34,1, Σ−1
34,34, Σ34,35 and σ35,2 with respect to σab’s, in

form, are

∂σ34,1

∂σ′
34,1

= Ip3+p4 ,

∂(Σ−1
34,34)ij

∂(Σ34,34)ab
= −2 − δab

2
{(Σ−1

34,34)ia(Σ−1
34,34)jb + (Σ−1

34,34)ib(Σ−1
34,34)ja},

∂2(Σ−1
34,34)ij

∂(Σ34,34)ab∂(Σ34,34)cd
=

1
4
(2 − δab)(2 − δcd)

8∑
(Σ−1

34,34)ic(Σ−1
34,34)da(Σ−1

34,34)bj ,

∂3(Σ−1
34,34)ij

∂(Σ34,34)ab∂(Σ34,34)cd∂(Σ34,34)ef
= −1

8
(2 − δab)(2 − δcd)(2 − δef )

×
48∑

(Σ−1
34,34)ie(Σ−1

34,34)fc(Σ−1
34,34)da(Σ−1

34,34)bj

(i, j = 1, . . . , p3 + p4; p3 + p4 ≥ a ≥ b ≥ 1; p3 + p4 ≥ c ≥ d ≥ 1; p3 + p4 ≥ e ≥ f ≥ 1),
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∂Σ34,35

∂(Σ34,35)ab
=

2 − δab

2
(Eab + Eba)(p3 ≥ a ≥ b ≥ 1),

∂Σ34,35

∂(Σ34,35)p3+a,b
= Ep3+a,b (a = 1, . . . , p4; b = 1, . . . , p3),

∂Σ34,35

∂(Σ34,35)a,p3+b
= Ea,p3+b (a = 1, . . . , p3; b = 1, . . . , p5),

∂σ35,2

∂σ′
35,2

= Ip3+p5 ,

where Ik is the k × k identity matrix, δab is the Kronecker delta, Eab is the matrix of an
appropriate size, where the (a, b)th element is 1 with other elements being 0. The partial
derivatives of Σ−1

35,35, in form, are given from those of Σ−1
34,34 by replacing Σ34,34 and p4

with Σ35,35 and p5, respectively.

B. The partial derivatives of ρ̂2
M1 with respect to s

Rewrite ρ2
M1 as ρ2

M1 = 1 − exp(−l∗), l∗ = − ln |Ψ| + ln |Ψ11| + ln |Ψ22|, where l∗ is the
population value of −(2/n)times the log likelihood ratio. Then, in the first step,

∂ρ2
M1

∂σab
= exp(−l∗) ∂l

∗

∂σab
= (1 − ρ2

M1)
∂l∗

∂σab
,

∂2ρ2
M1

∂σab∂σcd
= (1 − ρ2

M1)
(
− ∂l∗

∂σab

∂l∗

∂σcd
+

∂2l∗

∂σab∂σcd

)
,

∂3ρ2
M1

∂σab∂σcd∂σef
= (1 − ρ2

M1)
(
∂l∗

∂σab

∂l∗

∂σcd

∂l∗

∂σef
−

3∑ ∂l∗

∂σab

∂2l∗

∂σcd∂σef
+

∂3l∗

∂σab∂σcd∂σef

)

(p ≥ a ≥ b ≥ 1; p ≥ c ≥ d ≥ 1; p ≥ e ≥ f ≥ 1),

where p =
∑5

i=1 pi. The partial derivatives of l̂∗ with respect to ssb’s are given from

∂ ln |Ψ|
∂σab

= tr
(
Ψ−1 ∂Ψ

∂σab

)
,

∂2 ln |Ψ|
∂σab∂σcd

= tr
(
−Ψ−1 ∂Ψ

∂σab
Ψ−1 ∂Ψ

∂σcd
+ Ψ−1 ∂2Ψ

∂σab∂σcd

)
,

∂3 ln |Ψ|
∂σab∂σcd∂σef

= tr
(

2Ψ−1 ∂Ψ
∂σab

Ψ−1 ∂Ψ
∂σcd

Ψ−1 ∂Ψ
∂σef

−
3∑

Ψ−1 ∂Ψ
∂σab

Ψ−1 ∂2Ψ
∂σcd∂σef

+ Ψ−1 ∂3Ψ
∂σab∂σcd∂σef

)

(p ≥ a ≥ b ≥ 1; p ≥ c ≥ d ≥ 1; p ≥ e ≥ f ≥ 1),

where the partial derivatives of Ψ with respect to σab’s, in form, are given in a manner
similar to those of ψ1, ψ2 and ψ3 in Subsection 1.3 of this appendix with the following
definitions:

(Ψ)1i1j
= (Ψ11)ij = σ1i1j

− σ′
34,1i

Σ−1
34,34σ34,1j

(i, j = 1, . . . , p1),

(Ψ)1i2j
= (Ψ12)ij = σ1i2j

− σ′
34,1i

Σ−1
34,34σ34,2j

− σ′
35,1i

Σ−1
35,35σ35,2j

+ σ′
34,1i

Σ−1
34,34Σ34,35Σ−1

35,35σ35,2j
(i = 1, . . . , p1; j = 1, . . . , p2),
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(Ψ)2i2j
= (Ψ22)ij = σ2i2j

− σ′
35,2i

Σ−1
35,35σ35,2j

(i, j = 1, . . . , p2),

where 1i = i (i = 1, . . . , p1) and 2i = p1 + i (i = 1, . . . , p2).
The partial derivatives of ln |Ψ11| and ln |Ψ22| with respect to σab’s, in form, are simi-

larly obtained.

C. The partial derivatives of ρ̂2
M2 with respect to s

For convenience, Ψ−1
11 Ψ12Ψ−1

22 Ψ21 is seen as the product of Ψ−1
11 Ψ12 and Ψ−1

22 Ψ21.
Then, in the first step,

∂ρ2
M2

∂σab
= c−1tr

(
∂Ψ−1

11 Ψ12

∂σab
Ψ−1

22 Ψ21 + Ψ−1
11 Ψ12

∂Ψ−1
22 Ψ21

∂σab

)
,

∂2ρ2
M2

∂σab∂σcd
= c−1tr

(
∂Ψ−1

11 Ψ12

∂σab

∂Ψ−1
22 Ψ21

∂σcd
+
∂Ψ−1

11 Ψ12

∂σcd

∂Ψ−1
22 Ψ21

∂σab

+
∂2Ψ−1

11 Ψ12

∂σab∂σcd
Ψ−1

22 Ψ21 + Ψ−1
11 Ψ12

∂2Ψ−1
22 Ψ21

∂σab∂σcd

)
,

∂3ρ2
M2

∂σab∂σcd∂σef
= tr

(
6∑ ∂Ψ−1

11 Ψ12

∂σab

∂2Ψ−1
22 Ψ21

∂σcd∂σef
+

∂3Ψ−1
11 Ψ12

∂σab∂σcd∂σef
Ψ−1

22 Ψ21

+ Ψ−1
11 Ψ12

∂3Ψ−1
22 Ψ21

∂σab∂σcd∂σef

)
,

(p ≥ a ≥ b ≥ 1; p ≥ c ≥ d ≥ 1; p ≥ e ≥ f ≥ 1).

In the above expressions, the partial derivatives of Ψ−1
11 Ψ12 and Ψ−1

22 Ψ21 with respect to
σab’s, in form, are

∂Ψ−1
11 Ψ12

∂(Ψ11)ab
= −2 − δab

2
Ψ−1

11 (Eab + Eba)Ψ−1
11 Ψ12

= −2 − δab

2
{(Ψ−1

11 )·a(Ψ−1
11 Ψ12)b· + (Ψ−1

11 )·b(Ψ−1
11 Ψ12)a·} (p1 ≥ a ≥ b ≥ 1),

∂(Ψ−1
11 Ψ12)·b

∂(Ψ12)ab
= (Ψ−1

11 )·a (a = 1, . . . , p1; b = 1, . . . , p2),

∂2Ψ−1
11 Ψ12

∂(Ψ11)ab∂(Ψ11)cd
=

1
4
(2 − δab)(2 − δcd)

8∑
(Ψ−1

11 )·a(Ψ−1
11 )bc(Ψ−1

11 Ψ12)d·

(p1 ≥ a ≥ b ≥ 1; p1 ≥ c ≥ d ≥ 1),

∂2(Ψ−1
11 Ψ12)·b

∂(Ψ12)ab∂(Ψ11)cd
= −1

2
(2 − δcd){Ψ−1

11 (Ecd + Edc)Ψ−1
11 }·a

= −2 − δcd

2
{(Ψ−1

11 )·c(Ψ−1
11 )da + (Ψ−1

11 )·d(Ψ−1
11 )ca}

(a = 1, . . . , p1; b = 1, . . . , p2; p1 ≥ c ≥ d ≥ 1),

∂3Ψ−1
11 Ψ12

∂(Ψ11)ab∂(Ψ11)cd∂(Ψ11)ef
= −1

8
(2 − δab)(2 − δcd)(2 − δef )

48∑
(Ψ−1

11 )·a(Ψ−1
11 )bc
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× (Ψ−1
11 )de(Ψ−1

11 Ψ12)f ·

(p1 ≥ a ≥ b ≥ 1; p1 ≥ c ≥ d ≥ 1; p1 ≥ e ≥ f ≥ 1),

∂3(Ψ−1
11 Ψ12)·b

∂(Ψ12)ab∂(Ψ11)cd∂(Ψ11)ef
=

1
4
(2 − δcd)(2 − δef )

8∑
(Ψ−1

11 )·c(Ψ−1
11 )de(Ψ−1

11 )fa

(a = 1, . . . , p1; b = 1, . . . , p2; p1 ≥ c ≥ d ≥ 1; p1 ≥ e ≥ f ≥ 1),

where (·)·a and (·)b· denote the a-th column and b-th row of the argument matrices, re-
spectively. The partial derivatives of Ψ−1

22 Ψ21 with respect to σab’s, in form, are given by
replacing Ψ11, Ψ12, p1 and p2 in the above results by Ψ22, Ψ21, p2 and p1, respectively.
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