各項の個数に上限のある整数ナップサックについて

飯田浩志*

この小品は, Deineko and Woeginger [1] で示された, 各項の個数に上限のある整数ナップサック問題が多項式時間で解き得る特殊な場合を定める条件, についての覚え書きである。

キーワード: 組合せ最適化, ナップサック問題, Bounded Knapsack

古典的な組合せ最適化問題である 0-1 ナップサック問題について, 各項をいくつでも取り上げたのが整数ナップサック問題 (以下, UKP) である [2, 第 8 章]. この UKP について, 各項の個数に上限がある場合を特に Bounded Knapsack Problem (BKP) と呼ぶ [2, 第 7 章]. BKP を最小化問題として定式化すると, \(z_{\text{min}} = \min \{ \sum_{j=1}^{n} w_j x_j \mid \sum_{j=1}^{n} p_j x_j \geq P; \text{各} x_j (j = 1, 2, \ldots, n) \text{は非負整数かつ} x_j \leq u_j \} \) となる (制約 \(x_j \leq u_j \) を除けば UKP). これと対になる最大化問題としての BKP は, \(z_{\text{max}} = \max \{ \sum_{j=1}^{n} p_j x_j \mid \sum_{j=1}^{n} w_j x_j \leq W; \text{各} x_j (j = 1, 2, \ldots, n) \text{は非負整数かつ} x_j \leq u_j \} \) と定義される. 以降すべての \(w_j, p_j \) を正の整数と仮定する.

\[
\frac{w_{j+1}}{w_j} \leq \frac{p_{j+1}}{p_j} \quad \text{for} \ j = 1, 2, \ldots, n - 1 \tag{1}
\]

の下で, 最小化問題として定式化された BKP も多項式時間で解けることを

* E-mail: auau2-a-go-go@i.softbank.jp

[247]
示した。\((1)\) を仮定すると，床函数の性質から \(w_{j+1}/p_{j+1} \leq w_j/p_j\) が即座に
出る。このことから，最大化最小化にかかわらず，項 \(n\) が最も好ましいこと
になる。加えて，\(0 < w_{j+1}/w_j \leq |p_{j+1}/p_j|\) から \(1 \leq |p_{j+1}/p_j| \leq p_{j+1}/p_j\)
なので，\(p_1 \leq p_2 \leq \cdots \leq p_n\) が暗に仮定されている。

Deineko and Woeginger [1] が提案する線形時間アルゴリズムは，次の補
題を基にしている。

補題 4.1. (Deineko and Woeginger [1]) 最小化版の BKP で，\((1)\) を満たす
問題例 (instance) が少なくとも一つの実行可能解を持つ† ならば，次
の三つ：\(x_n = [P/p_n] , x_n = [P/p_n] , x_n = u_n\) の内いずれかを満足
する最適解を持つ。

証明は Deineko and Woeginger [1, p. 119] を見て頂くとして，ひとつ，その
証明中で，矛盾を導く為の二つの仮定のうち \(x_n < [P/p_n]\) が陽には使われ
ていないけれども，この仮定から \(x_n \leq [P/p_n] - 1\) で \(p_n x_n \leq P - p_n\) だから,
もし \(p(x_1, \ldots, x_{n-1}) < p_n\) なら \(p(x) < P\) で，\(x\) の実行可能性に反する.
よって \(p(x_1, \ldots, x_{n-1}) \geq p_n\) なので，\(m = n - 1\) の補題 3.1 につながる.

Deineko and Woeginger [1] は，最小化版のみならず最大化版の BKP が
多項式時間で解ける場合にも言及している。その中心になるのは次の補題で
ある。

補題 5.1. (Deineko and Woeginger [1]) 最大化版の BKP で，\((1)\) を満たす
問題例は，\(x_n = \min\{[W/w_n], u_n\}\) なる最適解を持つ。

その証明中ふたつの場合分けで後の方，すなわち \(p(x_1, \ldots, x_{n-1}) < p_n\) で,
\(m = n - 1\) の補題 3.1 が使えない場合に，\((x_n + 1)\) の項 \(n\) のみからなる解

† 問題自体が実行不能 (infeasible) ではない——要するに，最適解が存在する——というこ
と。最小化版の BKP では，例えば (というか，おそらくは唯一であろう) \(\sum_{j=1}^n p_j u_j < P\)
なら，制約を満たす解 (実行可能解) は存在しない。
各項の値数に上限のある整数ナップサックについて

を使って矛盾を導いている。その解の実行可能性が略してあるが、これは仮定から明らか。蛇足ながら、仮定から \(x_n < \min\{[W/w_n], u_n\} \leq [W/w_n] \) だから \(x_n + 1 \leq [W/w_n] \leq W/w_n \) と仮に、\((x_n + 1)w_n \leq W \)。

文献 [1] の第 6 節の前半では、(1) を満たす最大化版の UKP が多項式時間で解けることを前提として話が進む。このことは明示されてはいないけれども、補題 5.1 で \(u_j = +\infty (j = 1, 2, \ldots, n) \) とした場合を考えれば自明、ということなのだろう。証明は無論、補題 5.1 のがそのまま使えるけれども、UKP なら \(x_n \leq u_n \) を見る必要が無い分、少しだけ簡単になる。

補題 5.1′。最大化版の UKP で、(1) を満たす問題例は、\(x_n = [W/w_n] \) なる最適解を持つ。

証明。最大化版 UKP の (1) を満たす問題例について、\(x_n \) の値が最大の最適解 \(x \) を選ぶ。この \(x \) に於て \(x_n < [W/w_n] \) ならば、\((x_n+1)w_n \leq W \) および、\(x \) が \(x_n \) の値が最大の最適解であることから \(\sum_{j=1}^{n-1} p_j x_j > p_n \)。だからこの場合、\(m = n - 1 \) の補題 3.1 を用いれば、項 \(n \) に支配される部分を \(x \) から切り出して項 \(n \) を置き換えることで、\((x_n + 1) \) の項 \(n \) を含む最適解を構成できてしまう。これは、\(x \) の選び方に反する。

以上、せっかくの興味深い論文なのに簡潔さが過ぎて難解なきらいがあるように見受けられる文献 [1] を読む上で、このメモが僅かながらでも助けになれば幸いである。

参考文献

\(^\dagger\) \(u_n \) を除かない範囲で \(x_n \) の値を一つ増やせることは、補題 5.1 の証明中ふたつの場合分けの内、前の方における最後の一文で述べられている。