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Asymptotic cumulants of some information criteria

Asymptotic cumulants of the Akaike and Takeuchi information criteria are given under
possible model misspecification up to the fourth order with the higher-order asymptotic
variances, where two versions of the latter information criterion are defined using observed
and estimated expected information matrices. The asymptotic cumulants are provided before
and after studentization using the parameter estimates by the weighted score method, which
include the maximum likelihood and Bayes modal estimators as special cases. Higher-order
bias corrections of the criteria are derived using log-likelihood derivatives, which yields
simple results for cases under canonical parametrization in the exponential family. The
results are illustrated by three examples. Simulations for model selection in regression and

interval estimation are also given.

Keywords: Akaike information criterion; Takeuchi information criterion; Kullback-Leibler

distance; canonical parameters; higher-order bias correction.



1. Introduction

Typical information criteria are given by Akaike (1973) and Takeuchi (1976), which
are called the Akaike information criterion (AIC) and Takeuchi information criterion (TIC),
respectively. The criteria are used to assess the goodness of statistical models based on the
Kullback-Leibler (1951) distance using the maximum likelihood estimators (MLEs) of
associated parameters. In the AIC, it is assumed that a posited model holds or that a true
model is a special case of the model employed. On the other hand in the TIC, possible model
misspecification is considered. Stone (1977) derived the TIC in the context of cross
validation. Linhart and Zucchini (1986, Proposition 2, Appendix A.2.1) also derived the TIC.
For properties of the TIC, see Shibata (1989).

After the AIC and TIC were coined, information criteria with similar purposes have
been introduced by e.g., Schwarz (1978; the Bayesian information criterion, BIC); Kishino
and Hasegawa (1989), Ishiguro, Sakamoto and Kitagawa (1997, the extended information
criterion, EIC), Shimodaira and Hasegawa (1999) for the methods using the bootstrap;
Shibata (1989; the regularization information criterion, RIC) and, Konishi and Kitagawa
(1996; the generalized information criterion, GIC; see also Konishi & Kitagawa, 2003; 2008,
Chapters 5 to 8). In the RIC and GIC, the exclusive usage of the MLEs by the AIC and TIC
was relaxed to cover e.g., robust and ridge-type estimators. For other information criteria,
see Konishi and Kitagawa (2008) and Burnham and Anderson (2010).

The above information criteria are seen as point estimators of a corresponding
population quantity with bias correction under correct model specification for the AIC and
under possible model misspecification for the TIC, RIC and GIC. The population quantity is
the so-called mean expected log-likelihood (Sakamoto, Ishiguro & Kitagawa, 1986,
Equation (4.9)) associated with the Kullback-Leibler distance, where independent two-fold
expectation is used one for data in the future for prediction and the other for current data for
estimation with the same sample size denoted by n. When n increases, the population value

increases proportionately in an asymptotic sense. On the other hand, the terms of bias
correction are of order O(1) for the AIC and O, (1) for the TIC, RIC and GIC. For
tractability, divide the information criteria by » yielding quantities per observation as

n'AIC and n 'TIC. Then, the population value mentioned above is written symbolically
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as O()+0(n™") depending on n. The situation is somewhat different from that of typical

parameter estimators as MLEs, where the population parameters usually do not depend on 7.
When 1 becomes infinitely large, the population value O(1)+O(n™') fore.g., n'AIC

becomes O(1), which is the expected log-likelihood averaged over observations, where the

parameters are evaluated by their population values followed by expectation. The last

population value of order O(1) is also of interest as well as that of O(1)+ on™).

The bias correction of the TIC was extended to the higher-order version by Konishi and
Kitagawa (2003), which gives a refined point estimator of the population counterpart. On
the other hand, statistical testing of the difference of the information criteria for different
models have been developed by Steiger, Shapiro and Browne (1985) and Shimodaira (1997)
under local alternatives and by Linhart (1988), and Kishino and Hasegawa (1989) under
fixed alternatives. Interval estimation of the corresponding population quantities can also be
done in similar manners. While the above methods of testing and estimation is for general
models, the results for special models are available for the higher-order bias correction by
Sugiura (1978), Yanagihara, Sekiguchi and Fujikoshi (2003) and Kamo, Yanagihara and
Satoh (2013), and the asymptotic cumulants for standardized estimators by Yanagihara and
Ohmoto (2005) among others.

One of the purposes of this study is to derive general expressions of the higher-order

bias corrections of 7 AIC and »n'TIC based on the parameter estimators by the
weighted score method under possible model misspecification, where the expression is
different from that of Konishi and Kitagawa (2003). The expression is given by the
log-likelihood derivatives, which yields some transparent results for e.g., the cases of the
natural exponential family. Note that Konishi and Kitagawa (2003) used the von Mises
calculus (von Mises, 1947; Withers, 1983).

The second purpose is to give general formulas for the asymptotic cumulants of

n'AIC and n 'TIC up to the fourth order and the higher-order asymptotic variances
before and after studentization for testing and interval estimation of the population
quantities of interest. Three examples using basic distributions in statistics are shown. The

first two examples of the exponential and normal distributions use MLEs under model



misspecification, while the third example of the Bernoulli distribution uses the parameter
estimators by the weighted score under correct model specification. Simulations for model

selection in regression and interval estimation are also given, where the higher-order bias

correction of 7 'AIC are used for model selection.

2. The higher-order asymptotic biases
Let ® bea gx1 vector of parameters in a statistical model witha px1 vector X

of observable variables. Then, the log-likelihood of 0 based on 7 i.i.d. observations is

denoted by
1=101X)=31 =Y log £(x0) = £(X|0), @.1)

J=1 J=1

where X' isa nxp matrix whose rows (X', j=1,..,n) are independent copies of X

or their realizations for simplicity of notation, and f (Xj |0) is the probability density/mass

function for a posited statistical model. The log-likelihood averaged over observations is

denoted by / =n"'l. Define

A

L =10, [ X)=7{0,, (X)X}, 2.2)

~ ~

where 0, isthe MLE of the corresponding population quantity 0,.Let 0y be the
vector of the parameter estimators by the weighted score method (WSEs) or the solution of
0 satisfying
RECID: S
———+n q =0 2.3
0 q =0, (2.3)
where q =q (0), a function of 0,isa gxI1 weight vector, which becomes the log-prior
derivatives in the case of Bayesian estimation but can be other general weights. Define
by =10y 1X) =118, (X)X}, (2.4)

A

whose special case is 0,; in (2.2) when q =0.Let Z" bean independent copy of X,

where Z~ is interpreted as an independent data set in the future with the same sample size

as n from the viewpoint of prediction. Define



L' =E 10,12} =]  1(8,|2)g(Z|5)dZ, 2.5)

where g(Z|&,) is the true density of Z~ determined by the parameter vector &, of an
appropriate size, and is possibly different from f(Z|0,). Equation (2.5) is to be

interpreted as the corresponding summation when g(Z|;) is a probability mass.

Similarly, define

L,=10,1X)=0,() with E,(},)=1 (2.6)

and Z_\;=I

R(Z)

I, 12)2(Z]5)dZ=[  T10,(X)|Zig(Z|5,)dZ=0,0).  (2.7)
It is assumed that

—2E,(ly —ly)=n"'b+n b, +O(n") (2.8)

holds, where 7', and n°b, are defined as the asymptotic biases up to order O(n™>) of

—21,, whose population counterpart is —2E . (1;) =O(1) for the AIC and TIC with 7 b,

being the higher-order added asymptotic bias.
Theorem 1. Under (2.8) with regularity conditions for (A1.1) and (A1.2) in Subsection

Al of the appendix, the asymptotic biases n'b, and n”°b, of —21_\,: up to order O(n),

A

based on the WSE Oy, derived by the estimation equation of (2.3), are given by
_2Eg (ZW - Zv:) (2.9)
=n " 2tr(A"'T)+n7(c,+c, +¢;)+On~>)=n"'b +nbh, + O(n™>), '
where ¢, ¢, and ¢, are obtained by (A1.5) to (A1.7), respectively.
For the proof of Theorem 1, see Subsection Al of the appendix.

From (A1.5) to (A1.7), we find that b, and ¢; do not depend on qf) and are

A A

common to the results by the MLE 0,, and the WSE 0y, while ¢, and ¢, depend on

qf) . A considerably simplified result is obtained in the following case.

Corollary 1. When the vector of canonical parameters in the exponential family of

distributions is used under possible model misspecification,



2B, (ly —1y)=n""b +nc, +O(n™) with b,=¢, and ¢,=¢, =0, (2.10)

where ¢, is simplified as

—2E i(éw —0,)=2n""tr(A7'T)
g 890'
. -
—2n Z (A(H))(C_a b)an or o ol
a,b,c=1 o ¢ 60011 a90[) 890(3

(A)

q
+ Z (A(3_4) )(d:a,b,c) (}/abycd + yac;/bd + yadybc)
ab.c.d=1 (2.11)

+tr(§0i*'A1FAlj—tf[Eg(Jg3)){(A1‘1;)®(AIFAI)}] } O(n™)
0 (A)

=n"'b +n"c,+0(n™).
For the definitions of the undefined quantities and the proof of Corollary 1, see
Subsection A2 of the appendix.
The above result becomes further simplified in the following case.
Corollary 2. Under correct model specification and canonical parametrization,
¢ =—K '()?*)Kf3 (x)- K, '(i*)[l(q) ® {vec(I,)vec'(I )} K 4 (x")

o 2.12
i, (@ veed, ). 212

where X =1,"°X"; X" isthe qx1 vector of observable variables associated with the
minimum sufficient statistics (p = q); K, ;(*) is the q’ x1 vector of the j-th multivariate

cumulants of a qx1 random vector in parentheses using the distribution f (x| 0,) for

*

2. . : . : : :
x ; I,” is a non-negative definite symmetric matrix-square-root of 1, (the information

-1 . . :
under the assumption of its existence; and 1,

matrix per observation) with 1;"* = (1))
is the qXq identity matrix.
For the proof of Corollary 2, see Subsection A3 of the appendix.

Under correct model specification, since cov (X ) =1 due to canonical

parametrization, X is the vector of standardized variables with



p ol ol
cov,(X') =cov, [10” ? 89] J =cov, (ﬁ] =1, where cov,(-) is the exact covariance
0 0

matrix using (X |0,). Then, K s (X') and Kf3(5l~j /00, (=K 4 (X)) are seen as
g’ x1 vectors of the multivariate skewnesses of X and 5l~j /00, respectively. Similarly,

K, (X)) isseenasa ¢'x1 vector of the multivariate kurtoses of X . In the univariate

case, (2.12) becomes the sum of —2 times the squared skewness and the excess kurtosis. A
special case of the expression of (2.12) is shown in Poisson regression by Kamo et al. (2013,
Equation (8)). Other expressions and that for Poisson regression by a unified formula will be

shown in a later section.

Similarly, under correct model specification, b, in the asymptotic bias of order

O(n™") in (2.18) is also written as

. ol
b, =2tr(A"T) = 2q = -2vec'(I))vec(I;' ) = 2k, (X )k, (IO : ﬁ}
0

~

~k al i ~ % ~F
=-2K,,'(X)k,, (ﬁ] = 2K, '(X )k, (X).

0

(2.13)

The above results give
Corollary 3. Under correct model specification and canonical parametrization in the
exponential family, when the multivariate skewnesses and kurtoses of the associated

observable variables are zero, the MLE gives

A

—2E  (ly, —hy)=—n"2¢+0(n") (b =-2¢,b, =c,=c, =c, =0) (2.14)

where E () is defined using f(x'10,) similarly to E.().

This can happen, for example, when the covariance matrix in the multivariate normal
distribution is known, where the vector of canonical parameters is the mean vector.

Corollary 4. When the covariance matrix X of the g-variate normal distribution is
known, the MLE (the usual sample mean vector X) of the population mean vector W,

under possible model misspecification gives



A

2B, (hy —hy)=—n"'2¢q (2.15)
For the proof of Corollary 4, see Subsection A4 of the appendix. Note that there is no

remainder term in (2.15).

3. Bias correction for the AIC and TIC

Define
n'AIC,, =21, +n'2q,
N o (3.1)
n'TIC) =21, +n"'tr(-L,T,)
and n 'TICY =21y, +n ' tr(@V7IY) with TGV =AY,
where

A 7 - » ol ol . 27
LW = L, FW = I’lilz ,\] ~ / Py I(\;}A) = {_Eg ( a Z 'j} and
00,00, ' o0, 00, 000’ )| .

w

- ol. dl.
ID=!E J
: { g[ae ae'j}eé . G-2)

w

When the MLE is used, the subscript W in (3.1) becomes ML with AICy; = AIC (the usual
AIC), TICY) =TICY(j=1,2). The original definition of the Takeuchi information
criterion (Takeuchi, 1976, Equation (15)) denoted by TIC,; = TIC seems to be

TICﬁ)L =TIC? in (3.1), while the definition of the TIC by Linhart and Zucchini (1986,
p.245), Konishi and Kitagawa (2008, p.60) and Burnham and Anderson (2010, Subsection

73.1)is TIC,) =TIC" in (3.1). The two matrices —tw and fw are observed

A

information matrices given by 0y, and X', which are estimators of —A and T,

respectively, and become the estimators of I, under correct model specification. The two

matrices I(VQA) and I(VE) are also estimators of —A and I, respectively, and are the

A

expected information matrices followed by estimation using 0y, without X except in

0, (X"). Since it is often difficult to derive the expectation E, (1) in(3.2) when



g(x |¢,) isunknown, n'TIC{ is of practical use though #n 'TIC{ is more
complicated than 7 'TIC{ . The remaining combinations niltr(—ﬂ;{,ii{,b and
n_ltr(ig,_,A)_llAﬂW) for the correction term are not dealt with in this paper.

The higher-order bias correction of n_lAICW 1s meaningless under model
misspecification since the term n'2g for bias correction is incorrect and should be
replaced by that of n~'TIC|) which stands generically for TIC% (j =1,2). Consequently,

this reduces to the higher-order bias correction of n_lTIC(W') and will be dealt with later.
Theorem 2. Assume that a statistical model holds. Then, under regularity conditions,

define

n'CAIC,, = n'AIC,, —n2h, =21, +n"'2q —n (¢, + ¢, +¢,). (3.3)

Then, E, (n”'CAIC,, +21,)=0(n">) , where ¢, C, and C; are consistent estimators of
¢, ¢, and ¢y, respectively.

In some special cases, IflAICI\dL (=n"'AIC) gives the same result as that of Theorem

2ie., E, (n'AIC + 2Z\;L) =O(n”) . When the multivariate skewnesses and kurtoses of the

associated observable variables are zero, from Corollary 3 we have this result. Similarly,

when the covariance matrix of the multivariate normal distribution is known, Corollary 4

using the MLE of the mean vector gives the exact result E, (n'AIC+ 21—1\:L) =0 even

under non-normality.

For n 'TICY), under possible model misspecification, define stochastic tr\”’ and

try, in the expansions of n~ TICY (j=1,2) as follows.
Definition 1.
4 (1) - -1 r -1
n"'TICY) = =21, +n ' 2tr(-LT'y,)

I 3.4
= _2ZW + 7’171 2tr(_A71F) + 2(n71t1'§“) )OP(n*S/Z) + 2(n’1tr£” )Op (n?) + Op (I’l 75/2) ( )

and



n ' TICY =21, +n" 2t (ALY TY))

= _iw +n " 2tr(-AT'T) + 2(n ' trl™? Do oy + 2(n 't 0,0 +O, (n™?). 3-5)
For (3.4), define stochastic —Ay ™ and —A,"" as
Ly = AT CAGD), ey F CA), ) +0, (077, (3.6)
Similarly, define stochastic Fﬁ) and F;ﬁA) as
I, =T+ o,y + (rf@A))opm) +0,(n7"?). (3.7)

The actual expressions of —A;;(A) , —Agjm’ , Fﬁ) and F;ﬁA) in (3.6) and (3.7) are given

in Subsection A5 of the appendix.
From (3.6) and (3.7), we have

Lemma 1. The stochastic correction term in (3.4) of nflTICg,) in Definition 1 is

expanded as

n ' 2tr(-LTy,)

=n2tr(-A"'T) +2(n""tr{"" Do oy + 2(n 't} 0, 0, (n™?)
=n"2tr(-A"'T) +2{n 't (= Ay T - AT o, (3.8)

+2{n"'tr( - AT — ALY T - AT}

2
p (1

-5/2
40, (n7),

where the stochastic quantities are given by (3.6) and (3.7).

For (3.5) of n 'TIC{, define stochastic —A;"", — A", T® and T*" as

B0 = AT+ (A, e AT, 40,7, (3.9)

-2 -1
O, (n 0,(n

1§ =T+@Y), o +@M), L +0,077)

0,(n"? 0,(n >
. -1(A -1(AA A AA . .
where the actual expressions of —A;' ™, =AY, T and T'{*" are given in

Subsection A6 of the appendix.

Then, we have
Lemma 2. The stochastic correction term in (3.5) of n_lTlcg,) in Definition 1 is

expanded as

10



n " 2or(IGM )

o -1 -1, (T2) -1, (T2) -5/2

=n 2tr(-A"I)+2(n tr, )op(n*”) +2(n"tr, )Op(n,z) +0,(n7)

=n " 2tr(-A"'T) +2{n"'tr( - AT - AT )}op(ﬂz) (3.10)

+24n7 (= AT — AT - AT

-5/2
ot 0,(n"),
where the stochastic quantities are given by (3.9).

For the bias correction of 7 'TIC{ (see (3.4) of Definition 1), we derive the

expectations of the two stochastic terms 2(tr} " and 2(tr}” where the

0,(n™%) 0,(n™)>
former expectation becomes 2E, (tri™) = 2E {tr( - AyOT =ATTE)} =0 (see (3.8) of
Lemma 1) since E, (—Ay™) = E, (T';))=0 by construction. The latter expectation (see

(3.8)) is denoted by
E {2(tr(,")} =n"'d"", (3.11)

where the actual expression of d g given in Subsection A7 of the appendix.

For n_lTICg,) (see (3.5) of Definition 1), similarly we have
2E, (try"”) =2E {tr(- A{"“T = A"T{")} =0 by construction and
E {2(try)y=n"'d"™, (3.12)

where the actual expression of d'> is given in Subsection A7 of the appendix.
The higher-order bias corrections of nilTIC(V"V) (j=L12) are given as follows:

Theorem 3. Under possible model misspecification and some regularity conditions,

define
n"'CTICY =n 'TICY) —n (b, +d™) (j =1,2), (3.13)

where b, and d"" are consistent estimators of b,(=c, +¢, +¢;) and d . Then,

E,(n"'CTICY) +20;)=0(n").
4. Asymptotic cumulants

11



In Section 2, the bias of —2/, was defined as —2E . (Iy —1y) (see (2.8)) with the

A ~

definitions of Z_W and Z_W* by (2.4) and (2.7), respectively. In this section, the asymptotic
cumulants of —ZZ_W (= —ZI_(GW X)) = —ZI_{OW (X), X)) using the density g(X| )

are given, where the bias is also defined as —2{E, (Z_W) — l_o*} with Z)* being the

A A

population counterpart of Z_W , which is the limiting value of Z_W when 7 is infinitely large.
The value and the notation of l_o* are equal to those of (2.5) since
I =E 101Xy =] T(8,1X)g(X|g)dX

B B * (4.1)
=, 10,1 2)(Z18)dZ=F, T (0,1Z)}.

The asymptotic cumulants of 7 'AIC,, and n 'TICY)(j=1,2) are given before and after

studentization up to the fourth order with the higher-order asymptotic variances. The
studentization is for testing and interval estimation, where the population values of —2Z_W

are defined in two ways as —2E, (I_V:) and —21_0* . While these two values are of order

O(1), the former depends on 7 in that the value is generally written as
O(1)+O0(n™")+O(n*)+---. When n is infinitely large, —2E, (Iy) becomes equal to

—21,". So, =21, is also of interest as well as —2E . (1) . Note that asymptotically
unbiased point estimators of the latter up to order O(n™') are n 'AIC,, under correct

model specification and nilTIC(\’,;,) (/=L12) under possible model misspecification.
Under possible model misspecification, assume that the following hold with the

definitions of the asymptotic cumulants whose factors of O(l) are ay, for n ' AIC,,

and oy’ for n 'TICY (j=1,2) (k=1, Al, 2, A2, 3, 4):

12



Ko (7 AICy) ==2(1) Yo, +1 oy +n 0y, +O(n7),
K, (nAICy) =n""'ay, +nag, +O(n™),

Ko (' AICy ) =n"ayy +O0(n™),

Ko, (nAICy) =n"ay, +O(n™),

K, (n”'TICY)) = -2(1, Dowy +1 ay” +n o) +O(n™), (4.2)
K, (n” 'TICY)Y=n""al,” +nall) +O(n™),

3(IflTIC(’)) n“al) +0n™),
K~ 'TICY)Y=n"al)) +O(n™) (j=1,2).

From the asymptotic properties of n'AIC,, and n 'TICY)(j=1,2) given earlier we
have, K, {n"'AIC,, +2E . (I;)}=0(n™") under model misspecification and
Ko in 'AIC,, +2E (1 )} =0(n"*) under correct model specification with al)” =0

while &, {n 'TIC}) +2E (l )}=0n7?) with afi/" =0 (j=1,2) under possible

model misspecification. Note that the asterisk in e.g., Oc\(,(?l)* indicates that the

corresponding cumulant is K, {n"'AIC,, +2E s (1)} . Other asymptotic cumulants for

n'AIC,, +2E (l ;) and n 'TIC{) +2E (l ;) using the notations ol and
al” (k=Al, 2, A2, 3, 4), respectively, are defined similarly to (4.2).

Recall that 7 'AIC,, = 21, +n"'2q (see (3.1)) with the corresponding symbolic

expressions of the asymptotic expansions of n_lTIC(\fv) (j=1,2) given by (3.4) and (3.5).

A

Then, for the asymptotic cumulants of (4.2), we expand the main term —2Z_W common to

n'AICy, and n 'TICY(j=12):

13



4 j_

21y, =2, ~0,)" +0, (n"
w (0)0,,(1) Z; '(89 )<]>( W o) p( )

— S = ()y(k) (W) v
= —2([0)017(1) — 2Z;F—(890 v)<j> { A qO + kZ;A l +n (l )O (V2 (43)
=wi

-5/2
+0,(n7)

- ol NI .
= _2(10 )Op(l) - 2[80 '\J {_n IA 1qO + ZA(k)l(()k) +n 1(lE)W) )Op(nl/z)}
0 Jo, n?)

6927_ <2>
— {W} {_n lA qo + ZA(k)l(k) +n (l(W) )0 s }
0 0,()

k=1

l{L} [AqZAlj
n<3> 0 0
3000, 0 par

1 o'l (1)y(1) \<4> 512
—EEg W (A lO ) +0p(l’l ),
0

which gives

= - 4 _ *' — * -
=21y ==2(1,") o, +Z(1 W)O oy~ (174 AT ), o +0,(n77)
' (4.4)

(l(])_l(])’]_l 4)
where the derivation and actual expressions of (17’ )o iy (J=1,...,4) are given in
Subsection A8 of the appendix.

The last parenthetical results I =19 (j=1,..,4) indicate that —21, is equal to

-3/2

—21,, up to order O,(n”") . The remaining two terms of order O(n"*) and O, (n?)

(A)

are relevant only to ayy, and al;) (j=1,2) in(4.2).

Noting that n 'AIC,, = —27W +n7'2q, (4.4) gives
Theorem 4. Under possible model misspecification and regularity conditions for (4.2),

the asymptotic cumulants of n"'AIC,, up to the fourth order with the higher-order

asymptotic bias and variance are given as follows:

14



Kgl(n’lAICW)
:_2(70*)0(1) +n”! {nE (/ (2))+2q}0(1) +n” {n E (Zlvii) + ll\/([ﬁ)) qZ'A 1‘10}0(1)
+0(n™)
=21 +n*1{tr(A*1r)+2q}+n*2{n2Eg(z}§§> + I —q; A qg )+ O(n™) (45)
=201 +n'al +nall +O(n™)
() =l =tr(A7'T) +2¢),
ng(nflAICW) =n71[nEg {(ly “)) Hoawy T1° [2n2E (Iy (1)1 W) +2n°E L (IL)I_NEE)
+n’E (L))} —(aan) —29)*1+0(n™)
=n"'ays + 7y, 07 (nE, (L) =gy, —2¢ = t(A7T))
(aly) =aln, =nE {(LWYy=4E, {(I, = 1,')"} =4var, (1)), alg, = aim,),
K, (nAIC,)=n[ W’ E {10} +3n°E {(L3)) 10} = 3nE  (1)als), 1+0(n™)

-2 A -3 A A
=n"alt, +0n™) (aly =alr)),

K, (n'AICy ) =E [{n"'AIC,, —E, (n"'AICy)}*'1-3{n" oy, + n oy, 1> +O(n™)
=E, {(n"'AIC,, +2[,)"} + 1 [4(ayy —29){ong +3(any) —29)og)
+6(aymy —29) oy 1-3n7 (o)’ —6n angh oy, +O0(n ™)
=E, {(n"'AICy +2[,)"} =3n7 (o)’
—n” {4 (g —29)ongs +6onhongy, +6anys (ang —29)" ) +0(n™)
=1L 1 (i (WD)} oy + 4R E A0 B 3+ 6m°E (L) (L))
+4n’E (L)Y i} = 4ang, —2q)ons — 6o, —6anys (o, —29)° 1+0(n™)

73 A A A)
= IE/IL)4+0(n ) ((X( )_ l(\/lL4 .

In the case of the canonical parameters under correct model specification as in

Corollary 1, using (4.4) (see also (2.12)), the asymptotic biases become as follows:

15



Kfl(n_lAICW)
=20 +n (AT +2g} +n 7 H{n’E (L) + L) —qy ' AT qp} +O(n )
=-21"+n"'q

2 1 ok o 1 (X" ' X
+n" {—gkﬁ (XK ,5(x )—ZK.fs GO, ®{vec(I, )vec(T ;)i Ik, 5(X) 4.7)

+ZKf4 (x )Vec(l(qz))"‘qo I, q0:|+0(” )
=20 +nalt +nald) +On™),

where —1/6 and +1/4 come from (1/3)—(2/4) and (1/12)x3, respectively (see
(A3.2) and (A8.3)).

The results for n_lTIC(\Q (7 =1,2) corresponding to Theorem 4 are given from (3.4)
and (3.5) of Definition 1.

Theorem 5. Under possible model misspecification and regularity conditions for (4.2),
the asymptotic cumulants of n_lTIC(\f\,) (j=L12) up to the fourth order with the
higher-order asymptotic bias and variance are given as follows:

K, (n" TICY))
= —2(1_0*)0(1) +n {al —2g+2tr(= AT} +n 7 {ald) + 2n2Eg (tr) +0(n™)
=20 Do + 1 o) + 1 ) +O(n™)

(ay, =ay) =am —2q+2t(-A'T) =tr(—-A™'T)),

4.7

Koo (07 TICY) = "oy + 17 {ayp, +4nE, (L't} +0(n™)
=n"lay) +n oyl +0(n7) (ay) = o) =ay) = o),
Ky (' TICY) =k, (0 AIC,, )+ O(n™)
=n o +0(n”) (o = oy = oy = o),
Koo (0 TICY) =k, (n'AIC )+ O(n™")

3 (A 4 T T A A .
=n alE/lL)4 +0(n™) (asw) = ali/lLA)l = a§v4) = alE/lL)Af) (j=12),

where the superscript (T-) indicates a result common to n_lTIC(\Q (j=12).
In (4.7), Ot\%' ) = aﬁ}g = af,\g) = al(vﬁ stems from the property that the third asymptotic

cumulants of 7 'TICY(j=1,2) are givenonlyby L\ (=4\") and 47 (=1) of
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—ZI_W in (3.4) and (3.5) of Definition 1 (see the last parenthetical result of (4.4)) with the
fixed term tr(A"'T) in (3.4) and (3.5) being irrelevant to the cumulants except that of the

first order. The additional stochastic terms 27 (tr{'”) 0, (1'% for n'TICY(j=1,2) in

(3.4) and (3.5) with 1\ (=1) (j=1,2,3) in the expansion of —2ZW common to
n'AIC,, and n 'TICY)(j=1,2) contribute to the higher-order added asymptotic
variance 1oy (j=1,2) in (4.7). However, the contributions by 2n'trl'” (j =1, 2)
are canceled when we derive the (asymptotic) fourth cumulants, giving
o) = =l =l in (47,
For interval estimation of the population quantity —2I, as wellas —2E . (ILV;) by

n'AIC,, and n"'TICY)(j=1,2), the following studentized estimators are defined:

ty = n"(nAICy +21,) AT n'?(n'TICY +21)

W (A(A) )1/2 > f'wo T (A(A))l/z ( = 13 2)9
1/2 lA C 2 Z 1/2 1 C(]) 2 l (48)
(A _ n'"{n"AIC, + E(W)} oy )*_n {n" TICY, + E( )} —_
fy (A(A) 1/2 > W (A(A) 1/2 (j=1,2),
where £ and §” (j=1,2) are for estimation of -2/, while £ and

t07"(j=1,2) arefor —2E (l ;) under possible model misspecification; n Py is the

robust estimator of the asymptotic variance 7 'a), commonto n'AIC,, and

n ' TICY (j=1,2):

‘;\()&[})_4(’1 1) Z(Z W) _Op(l) (4.9)

with Ly =0l (G=Loon) and by =02 ly (for 1, see(2.1).
j=1

Under correct model specification, in many cases ain) may be explicitly obtained as

a function of 0, . However, since this result depends on a model employed, the four

versions of robust studentization in (4.8) are considered in this section. Define the stochastic
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quantity using 0, in place of éw in (4.9):

v =4 -1 (0, - 1) =0, (4.11)
j=1

with [y, =1, |o_, (j=1,...,n) and ly=n" Zlo, Then, v\ isan exactly unbiased

robust estimator of 0515482 with E, (V(()A)) = Oll(wAL)z though v(()A) usually includes the

5(A)

unknown 0. Generally, the estimator Vy,  is not an unbiased one but is a consistent

: A
estimator of OC]EAL)Z .

Under possible model misspecification, assume that the following hold with the
asymptotic cumulants, whose factors of order O(1) are OC((SV)W{ (k=1,2,A2,3,4) for

fe:

A -1/2 A -3/2
Kgl(ti,v )) =n a((t)évl +0(n—""),
A - A A
Ko, (1)) =1+n"al}, +0(n7) (o, =),
A -1/2 A -3/2
Kg3(tév )) =n ((t)\)’V3 +0(n—""),

A -1 (A -
Kg4(tév)):n a((t)\)V4 +0(n?).

(4.12)

Similarly, Ot((g\ﬂ)k for tg D Ot((t?&;k for t@? " and OC((S\,{,),: for
tg M(j=1,2), (k=1,2,A2,3,4) are defined. These asymptotic cumulants are obtained.

However, since their derivations and results are relatively involved, they are shown in the

first supplement to this paper (Ogasawara, 2016a).

5. Examples for the asymptotic cumulants

Three examples are given in this section. Each of Examples 1 and 2 uses the MLE of a
canonical parameter in the exponential family under model misspecification while Example
3 deals with the WSE of a canonical parameter in the exponential family under correct
model specification. The asymptotic cumulants, obtained in Section 4, for the examples are
shown in Tables 1 and 2, whose expository derivations are given in the supplements to this

paper (Ogasawara, 2016a, 2016b).
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Example 1: The MLE of the parameter in the exponential distribution is used when the
gamma distribution with the shape parameter ¢ being unequal to 1 holds. That is, the

density
f(x =x| Ay) = A, exp(—=4,x) (x >0) (5.1)
is used with 6, = A, when the true distribution is
g(x =x|A,a)=x""A" exp(-4,x) /T(t) (x>0, a #1) (5.2)
with §, =(4,,)' and T'(-) being the gamma function. By assumption a =1 is
excluded. However, when « =1 in (5.2), this reduces to (5.1). The MLE of 4, is 1/X,
where X is the sample mean of the observable variable. This gives the population 4,
under model misspecification as
/lozl/Eg()?):il/a_ (5.3)
Example 2: The MLE of the mean in the univariate normal distribution with known

. 2 . . . . . . . 2
variance o~ 1is used when the true distribution is non-normal with known variance o~ .

That is,

* 1 ()C_Auo)2
S(x :x|:u0762):\/ﬂaexp{_?} (5.4)

~

with Oy = fly, =X . In this example,

by =E () =E, (k)= _Elog(zﬂ'ﬁz) X
A A . A (5.5)
Eg(GML) = Ef(QML) = Ly, nvarg(QML) =nvar, (O ) = o’.

l _ 1 X* - :uO 2 . . .
However, Var,(/,;)= 1 Koy . +2 ¢ under non-normality with &, () #0 isnot

equal to var,(/,;)=1/2 under normality.

Example 3: The WSE of the logit in the Bernoulli distribution is used under correct
model specification. That is,

1

Pr(x" =x|0,)=n;(1-7,)" " (x=0,1), 7, = T+ exp(—0,)°
0

(5.6)
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A X A

While Oy = logl — (X #0,1)  where X is the usual sample proportion, 6y in

Example 3 is defined as the solution of 6 which maximizes

1

1+exp(—6)’ (5.7)

([T 7 =m0 im0 i 7~

where a is the sum of equal pseudocounts for two categories (do not confuse 7 with the

X +n'0.5a
1-x+n'0.5a"

circular constant used earlier). The solution is given when 0 =0, =log

In the footnotes of the tables, general results associated with the tables are given (for
derivation, see also Ogasawara, 2016a, b). In Examples 1 and 2, the results do not depend on
scales since / (log-likelihood) except a fixed term is scale-free in these examples. Although
o #1 isassumed in Example 1, o =1 gives the corresponding results under correct

model specification. Note that in the latter case with « =1, all the results in Example 1 are

given by fixed values. Under correct model specification, the bias-corrected n_lAICML up

to order O(n”), denoted by n 'CAIC,, , is given by as simple as

A

n'CAIC,, =21, +n'2+n72. (5.8)
Similarly, under normality, the results for Example 2 in the tables are given only by

fixed values, where &,’s (=K, {(x"—u,)/0}’s) (j#2) vanish. Note also that

n'AIC,, (=n""TIC{), j=1,2) in Example 2 is exactly unbiased even under

A

non-normality (see (5.5) and Corollary 3). In Example 3, the results when 0y, is used, are
given by a = 0.
In Example 3, from Table 1 we have

Corollary 5. Under the assumption that the Bernoulli distribution holds, n”~'AIC,,

A

Jfor estimation of —2E ,( l\;) using Oy, as the weighted score estimator of the logit with

the total number a of equal pseudocounts for two categories gives no asymptotic bias up to
-2

order O(n™") whena=1.

For the derivation of the higher-order asymptotic bias, see Ogasawara (2016b,
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Subsection S6.1). It is of interest to see that when a =1, 0y, is also unbiased up to order
O(n_l) (see e.g., Ogasawara, 2015a, Section 6). On the other hand, for estimation of
—21, the corresponding bias of 7 'AIC,, up to order O(n™>) is

n +n{(1/6)1- g_l) +(a’ /4)(1- 2, )270_1} , which is minimized when a = 0 and
7, #1/2 while a is irrelevant to the asymptotic bias when 7, =1/2.

Insert Tables 1 to 10 about here.

6. Simulation for model selection

Since in practice information criteria are used typically for model selection, simulations

using the n ' AIC (=n"'AIC,,; ) and the bias corrected n'AIC ie., n AIC—n"¢,

denoted by n"'CAIC (= nilCAICML) for selecting regressors are carried out in this section

when a regression model holds under canonical parametrization. Four types of regression,
logistic, Poisson, negative binomial and gamma regression are used, where a canonical
parameter has a form of the linear combination of p regressors including an intercept when it
is used.

Bias corrections of the AICs in logistic and Poisson regression are given by Yanagihara,
Sekiguchi and Fujikoshi (2003) and Kamo, Yanagihara and Satoh (2013), respectively by

different methods and expressions from those in this section. Since the unified result of bias

correction for the n~'AIC under canonical parametrization in the exponential family was
derived earlier (see Corollary 2, (A3.1) and (A3.2)), logistic regression and Poisson

regression are also deal with as special cases in this section. To the author’s knowledge, the

. . -1 . . . . .
results of bias corrections of 7 AICs in negative binomial and gamma regression are
new.

For computation, (A3.1) under correct model specification is written as
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¢, =—vec'(I;")J f,3 ) T, JY 'vec(J Oy —vec'(d ff) I, vee(JS)
—vec' (I )vec ;)"

q

q
_ .ad +be +c )
D DR A€ O T A "I e — 2 O ol il IE Yde.r) (6.1)

ab,c,d,e,f=1 a,b,c,d.e,f=1

q
(4) ad +cd
Z Jo )(a,b,c,d)lg Iy s

a,b,c,d=l1
where igb = (Igl)a,, and ¢ is the number of unknown parameters in a regression model. Let
yj* be the dependent variable in a model under canonical parametrization. Define X; be
the px1 vector for p covariates for the i-the observation (i = 1,...,n) and X=(X,,...,X,)".
Note that the expression y; is retained for the usual response variable under possible
non-canonical parametrization. The linear predictor using p,x1 vector of population
regression coefficients P, is assumed to be given by X,'B, for the i-th observation. Then,

A(=-1,), J and J" are derived by the following unified expression when only B,

is unknown:
K, (y;*)xixi s
hT o mso R
vee(J® 3 _3 k(7 )X,
Jo )= Z 8B0)<3> Z ()X (6.2)
T 4 "
vec(Jy”) = —— =2 K )X,-<4>,
’ j=1 (aﬁO) ! i=1 7

*

where ka(yf)(k =2,3,4) (y, =y, except ¥, =—Y, in gamma regression) are

shown in Table 3 under the headers of Variance, the numerator on the left-hand side of
Skewness and that of Excess kurtosis, respectively without subscript i. Note that in the

negative binomial and gamma distributions of Table 3, the shape parameters » and o ,
respectively are assumed to be given. When they are unknown, ¢, should be given from
(6.1) with g > 1 even when only an intercept is used in a regression model. We find in the

table that -2/« for ¢, inthe gamma distribution gives (5.8) in Example 1 when o = 1.

For clarity, the probability masses and density when the regression model with B,
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holds under canonical parametrization are given as

logistic regression: f(y; =¥, |7,) =moi (1=7,) ", 7wy, =1/ {1+ exp(-x,'By)},  (6.3)

Y=y =013 =1,...,n);
Poisson regression: f (v, =y, | A,) = Al exp(=2,,)/ y,!, A, =exp(X,'B,), (6.4)
vy =y,y,=012,.(G=1,..n);

negative binomial regression:
* yi tr _1 . I4 F(y, +r) i 1
f(yi :yi|ﬂ-0n’b):[ ’ ]7‘[8’;(1—750[)0 :'—Oﬂ({;(l_ﬂm)oa
Vi y!(r) (6.5)
0<m, =exp(x,'B,) <1, >0, y =y, y.=012,. (@(=1,..,n),

where 7, is the population shape parameter or the given number of the occurrences of an

event, when 7, is a positive integer (the Pascal distribution), whose probability for an

occurrence is 1—m, with 7, being the probability for the complimentary event whose

number of occurrences V;, when X is given, is of primary interest;

and gamma regression: f(V;, =y, | Ay @) = V17 AL exp(=4,,v,) / T(a,), (6.4)
Aoi =X, "By >0, o, >0, y:* :_yi*’ Y, >0@=1..,n),

where ¢« is the population shape parameter, which gives the Arlang distribution when «,

is a positive integer.

For computation of (6.1) in negative binomial and gamma regression when the shape
parameter is unknown, the derivatives of the psi (digamma) function up to the third order
(trigamma, tetragamma and pentagamma functions) are required, whose algorithm and
software are available (Amos, 1983; psigamma() in R Core Team, 2015).

Note that canonical parametrization in logistic and Poison regression seems to be used
most exclusively in practice although we have e.g., the probit and double exponential
models in regression using the Bernoulli distribution. On the other hand, canonical
parametrization in negative binomial regression is used by Hilbe (2011, Chapter 8) though

other parametrizations may also be typical (see Lawless, 1987). In gamma regression,

parametrizations using the mean and scale (the reciprocal of the rate parameter) are also
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typical especially when an event time is of primary interest rather than the rate of occurrence
(see e.g., Ogasawara, 1995).

In the simulation, categorical regressors for grouping are used, where

1 1
1 0

X= 1 1 ® l(nfs), (6.7)
1 1

—_ O O =
oo o -

1
0
1
0

oo

11
11
10
01

1(,,,/8) is the (n/8)x1 vector of 1’s and n = 40, 80 and 160. Two population values p,= 2
and 3 are used, where candidate models are given by p =1,..., p, +1. Note that the model
of p=1and X=(1,...,1)" is the model with an intercept only. Tables 4 to 9 show the

proportions of model selection by the minimum 7 'AIC and n 'CAIC(=n"'AIC,,).In

Tables 4 and 5 for logistic and Poisson regression, respectively, the mean (M) and standard
deviation (SD) of the (biserial) correlations of the estimated linear predictor X; 'I§ML and

y; overi=1,..., n are shown, where the correlation is defined as 0 when p =1. The Ms and

SDs are given from 1,000 replications in a simulation. In the tables, the number of deleted
cases due to non-convergence until 1,000 regular cases were obtained are also shown.

In Table 4 for logistic regression, the proportions of correct model selection (hereafter
called as correct proportions) by the CAIC are greater than those by the AIC except the case
of n=40and p,=3 with the underscored AIC. In Table 5 for Poisson regression, the
correct proportions by the CAIC are greater than or equal to those by the AIC. These results
repeat similar known ones. Tables 6 and 7 give the results of negative binomial regression
with 7 being known and unknown, respectively. In Table 7, the results of » = 4 are not shown
since non-convergent cases occurred frequently. The correct proportions by the CAIC are
mostly greater than those by the AIC. In Tables 8 and 9, the results for gamma regression
corresponding to those in Tables 6 and 7, respectively are shown. Although many of the
correct proportions by the CAIC are smaller than those by AIC when p, =3, the difference
becomes smaller or reversed when n becomes large.

It is known that in usual normal linear and Poisson regression, the AIC tends to choose
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overspecified models i.e., those including additional regressor(s) as well as true one(s) (see

e.g., Hurvich & Tsai, 1989; Kamo et al., 2013). The results in the tables give similar
tendencies. Note that the correction term —n_zél inthe n'CAIC penalizes models under

canonical parametrization when squared (multivariate) skewness is large and the excess

(multivariate) kurtosis is negative with its absolute value being large. It is found in the tables
that the n'CAIC corrects the tendency of choosing relatively complicated models to some

extent (note that ¢,’s in Table 10 are all negative) .

7. Simulation for interval estimation of —2E, (Iy)

A simulation for interval estimation of —2E, (Z_I\:L) , whose unbiased point estimator up
to order O(nfl) under correct model specification is n'AIC , 1s carried out in this section

as an application of the asymptotic cumulants of the studentized and non-studentized

n~'AIC in the case of the exponential distribution. Note that the asymptotic cumulants up

to the forth order are given from Tables 1 and 2 when a =1 in Example 1, which do not
depend on the rate parameter 4.

When the asymptotic cumulants are fixed values as in this case, it is known that under
some regularity conditions the following lower endpoint of a one-sided confidence interval

has the third-order accuracy as defined below (see Ogasawara, 2012, Equation (2.5)):

.3/ - -1/2 s~ / - / * *
L(a;n 32):—21ML—n PNz, -0 (3 <A’)”{a(<;;;m+(a(<;;gm/6)(z§—1)}

2y ) L (A)* 2 Zi 5 (A)* Zi Zy (7.1)
(Vh) (l)MLAZZa+(a(t)ML3 _E"'%Za T & ymes YRRk

where
JZ(I / \/E)exp(—z2 /2)dz=0a and Pr{-2E, (Z_AI\ZL) >La;n )y =a+0n?) . (7.2)

The above results are based on Cornish-Fisher expansions. In (7.1), the value up to

order O, (n"?) isan endpoint of the usual Wald confidence interval. The values up to

orders O, (n") and o, (n™"%) are the second- and third-order accurate confidence
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intervals, respectively. From Table 2 we have

(A)* 0 a(A) (A) =—1

Ciymer = (t)MLS( Aiymiz) =

(A)* _ A o (A) _
> Aiymiaz = 5.5 and A HmLa (= a(t)ML4) =14 (7.3)

which can be used in (7.1) with v (see (4.9)). Although aﬁﬁf (= (xl&AL)z) =4 for the

non-studentized 7 'AIC is a fixed value, robust v( )

against possible model
misspecification is used for illustration.

When aIE,IAL); is used, the following standardized statistic is defined in the case of
n"'AIC similarly to (4.8)

Ay _ n'"*{n"'AIC+2E, (zML)}
VI RISNE (7.4)

ML2

In the exponential distribution, from Table 1 when « =1, the factors of order O(1) for the

asymptotic cumulants of Z(A) are

(A< _ (A (A) — (A)* — ~A) —
At = 05 O (Fows) = =1 Qi (5 Amian) = 0.5
Ay (A —
and O vs (5 Qi) =2, (7.5)

A)* A A /2 _ A . .
where a((z)i,le oy / (ain,)"? = oy, /27(j =1, A2, 3, 4). The expression

corresponding to (7.1) is given by replacing OC((:;KZL] nd O b

a™”

Ay (J=1,42,3,4) and 2, respectively.

A simulation is performed in the following way. An arbitrary population value A,
three sample sizes n = 25, 50, 200 and seven nominal confidence levels (coverages) o =

0.005, 0.025, 0.05, 0.5, 0.95, 0.975, 0.995 for z, are used. Note that different A,’s give

the same results as far as coverages are concerned when the same seeds for random numbers

are used and simulated realized values of the observable variable are given proportionately

to the population scale 1/ A, . This was also confirmed by the simulation. While
2 =- 2E, (1) = —2{-24E ;(x¥)+logA,} =—2(log A, —1) is available when 4, is
known in the simulation, it is difficult to have —2E, (I_I\ZL) =-2E, (—iMLFLO +log iML) in

closed form without using an infinite series. In this section, this value is numerically given
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by a simulation with 10° replications.

Table 10 shows the simulated coverages corresponding to the seven nominal values.
The first and second blocks of the table are given by studentization when A,=1 and 4,
respectively with different seeds for random numbers while the third block by
standardization when A,=1 using the same seeds as those for the first block. Three

confidence intervals by Wald and Cornish-Fisher with second- and third order accuracies
(denoted by CF2 and CF3, respectively) are used. The simulated coverages show that CF2
improves the coverages by Wald and CF3 those by CF2 when the nominal values are less
than 0.5 at the small expense of over correction when the nominal values are greater than or

equal to 0.5 in the table. The same coverages by CF2 and CF3, when the nominal value is
0.5, is due to z,5 =0. The results by standardization are somewhat different from those by

studentization. However, they are mostly similar. Overall, advantages of the confidence

intervals by CF2 and CF3 over those by Wald are shown.

Appendix
Al. Proof of Theorem 1

We obtain an expression of b, which is different from that of Konishi and Kitagawa

(2003) with b, being well known. For the expression, we use the formula of the expansion

of éw =0,,(X’) given by Ogasawara (2015a, Equation (2.1) (see also 2015b for

correction); 2014, Equation (2.4)):

3
0y —0,=—n"A"q+ Y AV —n ' (LyQy, - A"qy), (n, +0,(n7)

j=1

0

3 *
=—n"'Aqy+ D AVLY +n”! [AIMAlq; —A™ —S(;l A

J=1

~ATE (A ) @ AT }+0p<n2> (ALD

3
=0 AT+ YAV ()

J=1

-2
) +0,(n7),

-1/2
0,(n
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where A=E, (0% /0008, , )=E (0" /08,08,")=0(1), q,=q"(8,),

A(j) 20(1) l(j):0 (n_j/z)(jzl 9 3) I: — azl_ | R Ei
0 T TV T 5000 0T 50, 00,
. en ol he 00 0q'(0)
=q (0,)),M=———-A=0,(n"), = o>
qy =q (0y) 26,00, p( ) 20, PYY |0_eo
3) 831_ <k>
Jo' = X7 =X® - ®X (ktimesofx), ® denotes the Kronecker

©00,(00,)>"
product, and (')0 (2 indicates that () is of order o, (n™"*) with other similar

expressions.

3
(2] [€2)
The term Z ALY in (A1.1) (Ogasawara, 2010, Equation (2.4)) is given from the
j=1

following expansion:

3

N _ @2 1¢2) -2
0,, -9, _ZAJIOJ +0,(n ), (A1.2)
j=1
Lol
AV =-A" —,
00,
ol 1 ol \~
APIP = A'MA™ S ATE, (IP)| AT
00, 2 00,

— — \<2>
ALY =—A"MA'MA™ aa_z +%A‘1MA‘1Eg I (A‘l %}

0 0

— — — \<2>
+A"'E, (J})) a'mat 2 el At O —lA’l{Jﬁf)—E J5)} At oL
¢ 09, 00, )| 2 ¢ 09,

— — \<2>
1 ol ol
——ATE,(I))[| A RIATE (I A —
2 g( 0 ) ( 590) { g( 0 ){ 590} }:l

— \<3>
1 ol
+—A"E, (I A :
6 g( 0 ) 890j
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J& = o'l G :i
" 80,00,)" " 00,

9

— — \<2>

o1 ( o1 o ]

0= vane G (] = =00,
0 0

81

1(3) M<2>®
-

— \<3>
ol
090,

—_ n3-D (3-2) (3-3) (3-4) _ -3/2
=GV GG Y =0 (1),

<2> <2>
ol ol
M) ® JV-E, IV ®
v'(M) (an'J ,vec'{ LI} (ae}

'

where AY7) = o) (j=12) and AP = 0O(1) (j=1,...,4) are defined implicitly by

2 4
A(2)182) — ZA(Z—j)lf)Z—/) and A(3)lg3) — ZA@—J)IS—]); V'(M)<2> _ [{V(M)}']<2>; V()

j=1 j=1
1s the vectorizing operator taking the non-duplicated elements of a symmetric matrix in
parentheses; and vec(-) is the vectorizing operator stacking the columns of a matrix

sequentially.

Expand -2/, and —2l, as

T T % ajl A <j> —
=21y, :_2(10)0,,(1) Z { 00, <j>} {0y, —0,)” }0 N +0p(n ) (A1.3)
1 ( ) 0[)(1) ’

L T 4 ajl_ A <> _
and _2ZW = —2(10 )0(1) z |: {W}} {(OW —90) J }Op(n—j/z) +0p (n 5/2) ,
=1 J o)

respectively. Then, recalling E, (I,)=1,", we have
_2Eg (lw - ZW* )

3 J iT n . Al4
Zi il R 0y, —0,) [+O(n™) Al4)
1| (08, (@0, ) |, e
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ol A <2>
=-2E {K(e 0)} B Eg {VGC'(M)(OW - 90) ’ }—>0(n’2)
—>0(n™")

0

1 A <3> -
—gEg{VeC'{JBS) —E, (J5")}(8y, —8,)""} +0(n™),

—0(n?)
4
where the term of j =4 in Zj:l (1) of (A1.3), when the expectation is taken, is absorbed in

the remainder term of order O(n); and E p ) o) indicates that the expectation is
taken up to order O(n").

ol ol
Let I'=nE, . When the model is true, I'=—A =1, where I, is the
89 890

population Fisher information matrix per observation. Under possible model

misspecification, the last three expectations in (A1.4) are given as

ol
—2E {E (9 o)}

= _2Eg {i( I’lilA + ZA(/)I(J) +n 1l(W))}

Jj=1

—42E, ol — ALY —<2E n’lilgw) +0(n™)
ae0 -2 ¢ 690' -2
o(n™) O(n™)

q _
:2n-1tr(A-1r)—2n-{ D AP) s oW E, | m o o j (AL1.5)
(A)

ab
a>b c,d=1 a90(3 a9061

. ] ol
+ Z (A(2 2))(c:a,b)n2E (80 a@Ob 89 j ZZ Z (A(3 1))(f ab, cd ,e)

a,b,c=1 azbczde, f=1

xsncov (m,,m_ )y +Zzlncov m i cov, | m i
g ab>" cd /1 ef & g ab> 6906 g cd’aeof
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L 2 ol : :
+Z Z (A(3 2))(e:ab, c,d) Z n COVg [mah’—j yde + Z (A(3 3))(f:abc, d,e)

a>b c,d,e=1 (c,d,e) 8900 a,b,c,d,e,f=1

3 ol d _
X Z I’ICOVg {(Jf)?’))(a,b,c)’ﬁ} yef + Z (A(3 4))(d:a,b,c) (yabycd + }/acybd + }/ad}/bc)
0d

(d,e,f) a,b,c,d=1

q 7 *
+ Z b (A—lq; ). n cov, [%, m,, ] +1tr [% A—TA—1]

a,b,c=l1 Oa 0

—tr[E, (35" {(A7'q) ® (A" TA™)}] }r O(n™)

(A)

=n"'b+n"c+0n>) (b =2tr(A"'T), c,=-21[-1]),
(A) (A)

where (A(z_l))(d:ab,c) indicates the element of the d-th row and the column corresponding
to (M), =m,, (the (a b)th element of M)and 0l /3(8,), =0l /86, of A®" with

(+). being the c-th element of a vector with other expressions defined similarly;

Z() = Z":Zq:()’ Zq: ()= quz":(), cov,(*) is the covariance using the distribution

azb b=l a=l e, f=1 e=1 f=1

2 3
g(X* 180); Z (*) is the sum of two symmetric terms with respect to e and /' with Z )
(e.f) (c.d.e)

defined similarly; and [ - ] is for ease of finding correspondence;
(A) (A)

~E_ {vec'(M)(0,, —0,)""}

— — \<2>
. ol ol
=-E ‘(M) 2(-n"'A'q))®| — A~ — |+] AT —
g vec( ){ (—n q,) [ aeoj ( aeoj

+2 _A‘l i ® (A(2)1(2))
0, ’
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q i q 7 Al
= _I’l—2|: 2 Z (A—qu)a lbchOVg (mab’aa—l + Z ﬂ‘ac/lbdang (m ol 0ol ]

a,b,c=1 006 a,b,c,d=1
(A)

" 33 (A “l s ol T
-2 Z ZZ(A(Z l))w:de,f)}b {Z”COVg mab’ﬁ]ncovg (mdeaw\J

a,b,c=1d>e f=1 (¢,.f) 0Oc

+ncov, (m,,m,)y,, } (A1.6)

L - ac 3 al— -
) Z (A(2 2))(b:d’e)/’t chovg(mab,ﬁjyde }O(n 3)

ab,c.de=1 (c.d.e) 0c
(A)

=n"’c,+0(n>),

1 A\ <3>
—3Bulvee'J57 ~E, (373 0y, ~0,)™"]
—_ <3>
1 ' 3) 3) -1 al -3
———E, | vec'JY —E, () -AT | [+0(™)
3 00,
(A1.7)

q .
=n" Z /’L“d/”tbe/”tcfncovg{(Jﬁf))(a’b’c),—}yd+O(n‘3)

ab,c,d,e,f=1

=n"c,+0(n”),

where A”™ =(A™),,. Then, from (A1.5) to (A1.7) we have (2.9).

A2. Proof of Corollary 1

Under canonical parametrization in the exponential family, it is known that

o =E o (/=2,3,...), which gi f(2.11) from (A1.5) with M= O
00,)" =1 (00,)" J =459,...) ,which gives ¢, of (2.11) from (A1.5) wit =

(a zero matrix of an appropriate size) and J§ —E J )=0 . The results of ¢, =¢c; =0

are derived similarly from (A1.6) and (A1.7) with M = O and J’ -E,(J =0,

respectively.

A3. Proof of Corollary 2

In the case of the MLE, the two terms associated with q:; in (2.11) vanish and
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recalling (A1.2) for A% and A®™® in ¢ of (2.11), we have

a . ol ol ol
Cl = _2{ Z (A(2 2))(c:a,b)n2Eg( j

a,b,c=1 a90a aQOb a900

+ Z (A(374))(d:a,b,c) (yabycd + yacybd + yadybc)}

a,b,c,d=1

. s ol ol ol
:_2{ bzl{— ATID(A 1)2} ang( J
a,b,c= (c:a,b)

00,, 00,, 00,,
q

- Y AN, BIA PN, ®(A, ]

a,b,c,d=1

N | —

X (}/ab }/cd + ;/ac }/bd + }/ad ;/bc)

q

1 - —1\<3>
+ Z E{A l'15)4)(/\ l) ’ }(d:a,b,c)37ab7cd:|

a,b,c,d=1

— \<3>
= —vec'(J;")n’E, {(—Al %j } +vec (A" TA I ' ATV vec(A'TA™)

0
+2vec' (IO AT ®(ATTAT )P hvec(I)) —vec (IS )vec {(A'TA)™), (A3.D)
where (-),. is the d-th row of a matrix and ()., is the a-th column of a matrix.
Under correct model specification and canonical parametrization, since
ol 108, = X —Ef(x*) and —A=TI=1,, (A3.1) becomes

. ol
€ =K, (XK, [Ig‘ ﬁj —vec' (I, ', 3P vee(I,))

0
—2vec' (IS vee (IS + K, '(x )vec{(I,)**"}
wy-1/2 % -1/2 alj y—1/2_ % , 1y (A32)
=K, (I " x )k 5| I 0. =K 5 (L, 7)), ®{vec,))vec'(T )}k (I, "x)

0

- 2K_/'3 '(IEI/ZX* )Kf3 (Ial/zx*) +K,y ‘(Igl/zx* )VeC{(I(q) )<2>}>

=K, (XK, () =, (RO, ® {vee(T ) )vec'(T,))} Ik 5 (X))

=2 "X (K) 416, (K vee(T )

which gives (2.12).
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A4. Proof of Corollary 4

T S < B o'l 53 .
Since Jg =690(800 S =L, 20, (00, )y (/=2,3,...) under canonical

parametrization, the asymptotic expansion using the MLE corresponding to (A1.4) higher

ol

than (A1.4) is given only by the first term —2E { 20" (AML o)} which is also given

0

ol ol
only by —2E {80 ( A" 189 ]} and —2Eg{h(Jf)3),Jf)4),...)},where h(-) is the sum of

multiplicative functions of the powers of the arguments.
- ol .
In the only non-vanishing term —2E, X (0. —0y)  for the expansion of the
0

ol ol ol ol
] : 2FE AT — |} =2tr{XZE
left-hand side of (2.15), {80 ( 00, j} { (59 00, j}

=—n " 2tr(EX")=—n"'2q under arbitrary distributions as long as ¥ and X' exist.
The remaining terms —2E, {A(J & JW. )} vanish when we use the normal distribution
even under non-normality since J f)j '=0(j=3,4,...) in this case.

An alternative direct proof of is given as follows. Let Z, (j=1,...,n) be independent
copies of X and E,.(-) denote an expectation over the distribution of Z~ or
z;(j=1L,...,n). Then, by definition,

~

2 n e _ 1
20, =—2E . —TZ(Z]. -X)'E7(z, —x)—zlog{(Zﬂ)q |z
J:

= tr(X L) + (1, —X)'7 (n, —X) +log{(27)" | X[} (A4.1)
=g+, —X)'T (n, —X) +log{(27)* | T},

which gives —2E, (ly) =(1+n"")g +log{(27)" | Z|}. On the other hand,
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RS n & e 1
—2E, (hy)=—2E, —TZ(xj—x)'z l(xj—x)—alog{(27r)q|2|}
Jj=1

=(1-n"Htr(X"'T) +log{(27)" | [} (A4.2)
=(l-n")g+log{(2m)" | Z|}.

Consequently, (A4.1) and (A4.2) yield —2E_ (ly, —hy)=-n"2q.

. -1 4
AS. Expressions of —Ay", —A,*Y, Ty’ and T{"

b

Let L ( ol ] h
et = ) , then
L0009, ),

~Ly =-L; +> L
P

q 2
+ > <-Ly oLy L, oL, L;erlL;)1 oLy L,
= o(0,), ' 4(0,), 27 0(0,),008,),

X (éw o Oo)j (éw - Oo)k + Op (I’l_3/2)
=—A"+A"'MAT -AMA'MA™

D A oL, oL, . [ oL, G g A
HAT - AMA );[Eg[a(eo)j}{a(eo)j Eg[a(ﬁo)j ]H(A AMA™

(a T gy

L0, -9,),

00,

J

[—aLO ]AIE (—aLO ]A1+1A1E [ L, ]Al}
a(0,), £ 6(0,), 2 ‘| 2(8,),0(8,),

oA A 2] o oy
00, ).\ 08, !
J k

+ Zq: {—AlEg

Jk=1
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:—AH{A 'MA" -AT'E (J(”){A ®(A1§é jH
O (n—l/z)

J{ ~A'MA'MAT + ATMAT'E (J“)){A ®(A1§; J}
0

(A)

1 (3) 1 ; Ol A T® 3) el
+ATE, (J§ ){(A MA~ )®£A aeoj} AT —E, (I )}{A ®[A aeoj}

+AE, (AT ® (A gy + APIT) | - A {E (J(”){A ®(A1§é jH
0

— \<2>
1 ol
+—A"E_ (J{" R A +0 (n"?
2 ( ){ ( 800j }} p(” :

(Ao, (™

_ -1 -1(A) ~1(AA) -3/2
=-A" + (—AM )Op(n,m) + (—AM )op(n*) +Op(n ).

(A5.1)
Let
L&l ol .
G=G(0)=G(0,X)=|n Z , G,=G(0,)=G(0,,X"),
00 00"
0,(1)
G, =T'+(Mg), ), E(G) =T, Gy}, =0G, / 8(0,),, (A52)
Gg‘(‘)/k) 82G0/8(90)j8(90)j(j,kzl,...,q),
then
Iy = G(éwaX*) = (Go)o m T (fw _Go)o ")
=T+M, +ZIG5?” ~0,), +— kZIGgi} 00y =0,) (8, —0,), +0,(n™")
J ]
N (3) -1 A -1 _* (k)y(k) 4 Dy Wy (A5'3)
=T'+M, +Z;G0(j) (—n A''q, +;A 1 ) ;Gg(;,k)(w 1)), (AY1),
J= = i J
-3/2
+0,(n7)
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: ol
= F+{MG —ZEg(fo()j))[A 1 ]

/=1 80 1/2
‘ Jo,n™")
N G® _E (G® Al(’)l E + A
T _Z{ o) ~Ee(Goj))J 20, +Z GG (=n"! 0 ),
®
ol ol
+— E G(4) A AT L0 (n"?
e )] | o
(Ao, (™
=+ (rl(‘i))%(n’“) Iy )Op(nfl) +0, (n”").

. -1 _1
A6. Actual expressions of —A;"“, — A" T\® and T

Omitting terms with M, J§” —E,(J§"), My and Gy, —E, (G{)) in (3.6) and

(3.7), we obtain

IV =-A" - ATE,(J7) AT ®| AT — ol
ae0 0, (n""?)

n

— 2
J{ ATE, (D) A" ® (- A gy + APIT) | - A {Eg(Jﬁf)){ A ® [ Aol ]H

00,
(A)
— \<2>
LS IHIAT® A*‘ﬂ +0 (n?)
2 & 00, r
Mo, (™)
_ -1 —1(A) -1(AA) -3/2
=-A" +(—A, )Op(n,l,z)+(—Al )O(, +0,(n7),
(A6.1)
ol
( ) — 3) -1 3) -1 2)1(2)
r {ZE (GY, [A p ] } { ZE Gy )(=n"' A qy + APLY),
0/ -2
O,(n) (A
ol ol
+= Y B (G )| A =—| | A= +0, (n"?
Ercials ) [v) | oo
Ao, ™
=I'+ (F;A) )op(n*”z) + (F;M) )op(nfl) + Op (n_m ).
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(A6.2)

A7. Actual expressions of d'"" in Eg{Z(trgl))} and 4" in E {2(tr i)

(TDH
E, (2(tr)}
=2E {tr(— Ay, Ty — AT —ATTHY)}

:n12Egt{ n AIMAI—AlEg(JS)){Al@(A ol )}
00
0 (A7.1)

(A)
{M -3E, <G3m>[ %] }

+n{ ~AMA'MAT + AT'TMAT'E (J“’){ (A laaé J}
0

(B)

1 (3) 1 , Ol Al 703) (3) , ol
+A7'E,(J ){(A MA" )®[A aeoJ} ATID —E (I )}{A ®[A aeoJ}

— 2
0

— N\ <2>
LS IHIAT® Nlﬂ r
2 ¢ 00,

(B)

R ol ;
—nA 1{ —Z}{GS&)—E (Gy)) [ B j ZE (G ) (=n"' A gy + A1),
P |

©

ol ol
+= > B (G )| A A —
sErenvg ) (va) ] |

©
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= n12{ vec'(A™)nE, (Mg @ M)vec(A™)

(A)

- 3 A,E DA, 8(A), E, {%(Maba}

a,b,c=1 Oc

q q _ 61_
ac 4 db 3) e

- D A“A"YE (G A nEg(mcd—ae j

j=1 Oe

a,b,c,d,e=1

q .
+ 2 (AT, E,(IA™), ®(A™).E (G WA Y.

a,b,c,d=1

+ { —vec'(A™)nE , (M™ )vec(A'TA™)
(B)

£2 3 (A, B, U9 A TA ™), ®(A ™), InE, (m %]

- Zt{E {{Jg” —Egug”)}%}{(A*rA*) ®<A1).a}}

+tr[E, ) {(A'TA) ®ay,}]

-3 u[PA”E,(39) (A ® (A7), 1B, 3P) A" © (A, 7.,

a,b=1

+%VCC 'E,(J5"){vec(A"TA™)}™* }
(B)

a _ ol |,
_{ - 2 7k, {A HGi) —Eg(Gé?l))}ﬁ}l ’
a,b=1 0b
(©

q ~ 1 q ~ ~ ~
S AR, (G o) 1 3 A B G AT, |
J= JK=
€) A)

— n—ld(Tl),

where n oy, =-n"'A"q, + E, (A1) s the vector of the asymptotic biases of 0y,

up to order O(n™") under possible model misspecification.

On the other hand,
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(T2)
E {2(try,")}
= 2Eg {tr( _ AII(A)F;A) _ AI—I(AA)F _ A_IFEAA))}

] oamomfaco(s ) geen ] |

(A)

+ n{ AE,(I{AT @ (="' Agqp + ADIP)}
(B) (A7.2)

ranfeele 2]

<2>
+;A 'E (J(‘”){A ®(A 1;; J } }r }—n‘IZEg{tr(A‘ll“(lM))}
0

(B) (&)

=n‘12{ S (A7), E,(05)A™), ®(A™), }ZE (GS) A 7.,

a,b,c,d=1
(A)

{ tr[E,(J){(A"TA") ®a, }]
(B)

3 4FA7E, (IE) A @(A™),JE, (YA ®(A™), 17,

a,b=1

+%V€C 'E,(J5"){vec(A"TA™)}™ }

(B)

q

_|: Ztr{AilEg(GS()j))(an) f+ ;tT{A 'E (Ggg,k))}(Aieril)jk :| }
= 1

(C)] ] © &)

=n"'d".
A8. The derivation and actual expressions of (}/ ))O ooy (T=1ed)

The five terms up to order O, (n?) in the last expression of (4.3) are further

expanded one by one as follows:

(i)
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_2(1_0)0”(1) = _2Eg (Z)) - 2{1_0 - Eg (Z))}
= —2(1_0* )0(1) - 2(1_0 - Z_o* )OP(n’l/z) )

(ii)
al_ A lg” N (F)y(5) —1p (W)
—2—|-n A qO+ZA I +n 1
00, —
= Z(nli'Alq;J +2[ ol 'A—l ﬂ] —2(i'1\(2)lf)2)] e
00, 0, (%) 00, 00, 0, (™) 00, 0,0 (A8.1)
—2(—61_'&3)155’} —2(;11 —87'15)‘”)) :
890 Op(rfz) 800 Op(nfz)
(iii)

821_ ] # 3 - o <2>
B n<2> -n- A q, + ZA 10 +n 10
@0, ], ,,

3 <2>
= —vec'{A + (M)Op(nm)}(-ano £ AV 4 nl(lgw»j

= —{n*ZVeC'(A)(Aflq;)<2>}0(n72) _ 2|:I’ZIVCC'(A) {(Aqu) ® (Al %]}}
0 o (n"?

+2[n" vec (A) (A q) ® (AP _{VCC'(A)(AI %l }

0,(n™")

+2| vec'(A)S| A7 — ®(A(2>1E)2))
800 o ( 73/2)

+2| vec'(A)S| A~ — ®(A(3)1E)3))
00, o o)

—{vec (AYAPIP) T L +2 {nlvec (A) {[Al %} ®1;" H
’ 0 017(”72)
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2| n”'vec'(M) (A‘1q2)® A—lﬂ
00, .
0,(n7?)
al_ <2> al—
B VGC'(M)[Al —] +2 Vec‘(M){A1 _J®(A(2)1§)2))} ’
00, 0 () 00, .

(iv)
Jﬂ(_nl Mg S A(k)l(k)j<3>
3 (800 1)<3> 0 - 0

1 . . 2 <3>
- —gvec'[Eg(Jff)) +{Jy) -E, (Jff))}op (nm)]£—n 'Aq, + ZAU‘)lg")]

k=1
87 <2>
=| n”'vec{E, (I} (A'qp) ®| A —
’ 09,
0,(n?)
1 87 <3>
+— YE J(3) A—l_
3lvec{ g( 0 )}( 500] ]
O[,(n’yz)
al— <2>
—| vec{E, (I AT=—| &A1)
) 00,

— \<3>
1 ol
+— IO _E (IO AT E ,
3lvec{o L5 )}[ 800] ]

op(nfz)

OP(n’z)

(V)

1 — \<4>
1 o'l 1 ol
__—_F J—" A(l)l(l) <4 _ 1 vec'(E J(4) A’l
12 g{(aﬁo 1)<4>}( 0 ) 12[ { g( 0 )} —aeo

Y2 — \<2>
ol 0l L al
A —=vec'(A)| A — . .
00, 20, ( )( 20, ] and similar results in (A8.1), (4.3)

o, (ifz)

Using

becomes
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- — - ol ol
2y =250, =205 =), o) J{ae A 15]
0 0 0 )

{ 2n”! ail A lq*—2%A(2)lff)—2nlvec'(A){(Al *)®(A‘§é ]}
) 0 0
T ol
+2vec'(A) [ ]@(A(z)l(z)) —vec (M)(Al J
00, o0 (A8.2)

— \<3>

1 ) , Ol
+3vec HE, (J; )}[A pvs ) }

(A)O,, (n¥?)

—{nvec (M)A 'q9) ™}, 2,

J{ —2%1\(”]9 2n”! aal 1™ + 2n7'vec (A){(A™'q,) ® (AP1P)}

(D)oo (s
ol o w | Lol
+ 2n vec'(A) X1 —2n"'vec' (M) (A'qy) ®| A
o0, EN
(2 e (B e
ol ol Y
+2vec (M){[Al j@(A(z)l(z))} +n"'vec'{E (J(”)}{(A 1q0)®(A lae ] }
T2X(A) v ? ------------------------------------------- N YOS ? ..................
— \<2> — \<3>
—vec'{E (J“))}{[ —j ®(A‘2’l§f’)}+ vec'{J;) —E (J“))}(Al ]
0 800
S2X(A) ettt

— \ <4>
1 ol _
~ 75 Vee "(E (J(4))}(A 150 ] } +0,(n7"?)
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— S — ol ., ol
==2(ly )oay —2(L =1, )Op oy ¥ (W A 15]
0 0/70,(n™")

[—VCC (M)(A 1;{; j +%VCC'{Eg(Jg3))}[A_1 ;—éoj ]

32
0,(n™"7)

~(n7q,'A7'dg) 2,
1 a— <3>
Jrlvec'(A)(A(z)lf)z))<2> +gvec'{J(3) E (J(3))}(A 180 ]

— N\ <4>
1 ol _
— 5 vee "(E (J(4))}[A 180 ) ] +0,(n”"?)
0,(n?)

z—2<z‘o*>om+z<l“>>o( ey =7 AT ), s 40, (07
Jj=1

T 70
(" =1,",j=1..,4),
where the underline with a number in parentheses indicates a quantity and the negative

number e.g., “—a x(4)...” indicates —a times the quantity which has the sign “(4)...”

when the quantities with “—a x (4)...” are summed.

In the last result of (A8.2), the first term for l_“(,4) can also be written as

vec'(A)(APIP)

=vec'(M){Al ij@(A 'MA™' ol ]}
20, 20,

Coant 3) —li - 1 0l
vec'{E, (J; )}{(A %0 j ®(A MA"™ aﬂoj} (A8.3)

0
1 al_ <2> al_ <2>
+—vec"{E, (I | AT=—| ®IA'E I A
vt (L) sfave a2
(recall (A1.2)).
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Table 1. Asymptotic cumulants of n~'AIC,,, and n”'TICy], (j=1,2) before studentization

Example 1

Example 2

Example 3

Model distribution Exponential

True distribution

gamma, «a #1

normal with known o

non-normal

Bernoulli

Bernoulli

Parameter canonical (the reciprocal canonical (mean) canonical (logit)
of the scale)

AIC n'AIC,, n'AIC,, (=n"'TIC) ) n'AIC, (=n"'TICY))
al(leL)(W)l 2—-a 1 1
Oy wyar ~(1/6)a™ 0 1/6)1-7")

+(a® 1 H(1-2r7,) 5"
Oyt 2-2q" 0 0
Ahiiwal 20 0 (a-D{(1-27, )5 " +2}
Uiy 40! K, +2 4071
Crwynz 207 —2(x, +1) 2
U wy —8a K, +12K, +4K2 +8 —{802(1-27,)

+240; i,

s 320 Ky + 24K, + 32Kk, (160, (1— 67, +677)

Higher-order

bias correction

(see the case of
n”'TIC,) below)

+32x; + 144k,

+961c; +48

n'AIC,, (=n"'TICS,,

is unbiased

+12860;(1-2x,)
+1920; Vi,

n'AIC

Wo0(n™?)
=n"'TIC)) |
=20, +n'2
+n(1-a)[ 1-2x%)°

x {x(1-x)}" +2]

(to be continued)



Table 1. (continued)

Example 1 (aj\, =aly),, in this example)

TIC n” TIC,

) o

o, ey @)@
6a’  afoy'(o)-1}

il 0

alyh _2 av'(@)+yi(@)

2

o’ alay'(a)-1}

Higher-order n”'TIC!

ML—O0(n?)
bias correction

:_ﬁMLM_I%M_z %_oiwﬂ(a)irw(az)
a”  alay'(a)-1

Note. oy’ are for ng(n*IAICML+2ILO*) while oy, are for ng{n*IAICML+2Eg(lLI\;L)}

(j=1, Al, 2, A2, 3, 4) in Examples 1 and 2. Similarly, e} and ) are defined in Example 3.
w'(-) and y"(-)are the first and second derivatives of the digamma function y(-), respectively.
Generally, oy =y, ong) =ay) (j=2, A2, 3, 4), ay) =ay, (j=1,2, A2, 3, 4),
Oy #oryy, and oy =ay’ =ay) =ay; (j=2, 3, 4).

In Example 1, «;, =x_; {(x"—u,)/c} and in Example 3 i =x,(1-x,) isthe population

Fisher information per observation.



Table 2. Asymptotic cumulants of n~'AIC,, ., and n”'TICy], (j=1,2) after studentization

Example 1 Example 2 Example 3
AIC n'AIC,, n'AIC,, (=n"'TICS), n'AIC,, (=n"'TICY))
O =12 (e, +2)" = (1 2)(k, +2)7 {(3/2)6,"
x(ic, + 12, + 6K2 +8) +(1/2)(1-27m,)}i, "
Aoy a—a ~(1/2)(x, +2)" {0, +(1/2)(1=27)}i,
(i, + 12K, + 617 +38)
Aoz 1 1 1
T () o ) 2-2(k, +2)" + (K, +2) 2 (K, {z (127 +(_£+ g)
+ 8Kk, + 2K, —4ic, +50K) 4 4 2
i, +2)7(7/4) x90—1<1_zn0)+ﬂeo-2}g-l
x (K +121, + 67 +8) 2
+2
o (712 +2 Oas + (1, +2)7 { 7 (1-27 ) + (_g N 4j
(= pia in x(ic, + 12K, + 6K +8) 4 4
Example 1) x 0, (1-27m,) + %002 }g‘
+2
aomws  —a -2(k, +2)7" 2(1-27,)+360," Vi, "
x (i, +121c, + 7K +8)
Amiws 8 +6 12-18(xc, +2) " +(x, +2)7 {10(1-27,)’
x(—2k, — 48k, — 64ic,x, — 70K, +260,"'(1-27,)
—294ic, — 1447 —84) +260,23,7 +10
+(x, +2)°
x{12(k, +12K, + 6K; +8)
+12(x, + 12K, + 6K +8)K; }
TIC n TICy,
[V 1/2)a™?
aftfiﬂl 0 (not a general result)
a((tl;l.\/)ILAz (7/2)a™" +2 (= a((t/;lzdLAZ
in Example 1)
af;ilim (7/2)a™" +2 (= 0‘((;?134LA2

in Example 1)

(A) (A) (A)*

(A) (A)

- P (A _ - — —
Note. Generally, a; )y, =i, (=L 2, 3, 4), ¢, v = % = Xywa = Eyme =1 and

A _ (A _ o (A) s _ _
Aiyw; =%oyme; = Loyw; = Xoyme (=3, 4). Generally, Ainywr = Foymr = Aipyw

(Te)* (Te)*

— @A) (Te)*

(T) (Te) (A) (A)

Ay, = Aoy = Xow, = Aoy = Yw; = Ao (J =35 4).

(Te)*

(T _ o(T)
=, =1 and



Table 3. ¢, in the higher-order correction term —n~¢, forthe n'AIC under canonical

parametrization for one-parameter cases

Variance Skewness Excess kurtosis ¢
Distribution (=sk) (=kt) (=—2sk’ +kt)
Bernoulli (1-27m))my(1—7,) (1-6rx, +67T§)770(1_7T0)
z(-7,) {”0(1_”0)}3/2 {”0(1_770)}2 _1—27T0 +27T02
g (1=7,)} 7, (1-11,)
Poisson Ao Ao/ 27 = 2" Al AE=2" i
1 N 67,
- (I1-n,) (1-n,)
0 67,
Negative v
o 1 27, d-=)
binomial oy {(1 “ay  (-m) } trmy (1=, ) i
0
(ﬁxed 7") (1_71.0)2 {rﬂo/(l_ﬂ0)2}3/2 =(1—7Z'0)2+67:::T(1_7T0)+67T§ - rﬂo
1+7 0
=) _(-m,)’+6r,
0 B Y,
Gamma 2a a ¥ 6 (04 ’
L3 /57 /5 Y
(fixed o) 22 A 4 AN *

=2/a" =6/a




Table 4. 1,000 times the proportions of model selection and associated statistics in logistic regression
by the AIC and CAIC

Po=2, Bo=(-11)' Po=3, By=(-L L1’

p: 1 2 3 Deleted 1 2 3 4 Deleted

n=40 AIC 421 447 132 2 242 237 389 132 3
CAIC 443 456 101 265 267 387 81
Cor M 0 0250 0.299 0 0246 0.373 0.404
(SD) (0 0.143 0.133) (0 0.136 0.128 0.122)

n =80 AIC 239 597 164 3 69 147 629 155 0
CAIC 255 606 139 78 166 634 122
Cor M 0 0233 0.261 0 0234 0.353 0.368
(SD) (0 0.105 0.101) (0 0.107 0.098 0.094)

n=160 AIC 44 795 161 0 3 37 810 150 0
CAIC 44 797 159 3 37 816 144
Cor M 0 0237 0.251 0 0233 0.339 0.348
(SD) (0 0.075 0.073) (0 0.073 0.069 0.068)

Note. p,= the true number of regressors including an intercept, p = the number of regressors

including an intercept in a model, Deleted = the number of deleted cases in the simulation, Cor = the
correlation between X, ' w. and y overi=1,...,n, M and SD = the mean and standard deviation

of Cor’s over 1,000 replications. An underscore indicates that the proportion of correct model
selection by the AIC is larger than that by the CAIC.



Table 5. 1,000 times the proportions of model selection and associated statistics in Poisson
regression by the AIC and CAIC

P, =2, B,=(0.7,0.7)" P, =3, B, =(0.7,0.7,0.7)’

p: 1 2 3 Deleted 1 2 3 4 Deleted

n=40 AIC 6 846 148 0 0 0 832 168 0
CAIC 6 847 147 0 0 834 166
Cor M 0 0516 0.534 0 0507 0.720 0.729
(SD) (0 0.107 0.104) (0 0.086 0.062 0.060)

n =80 AIC 0 849 151 0 0 0 858 142 0
CAIC 0 850 150 0 0 861 139
Cor M 0 0503 0513 0 0496 0.710 0.714
(SD) (0 0.080 0.078) (0 0.063 0.045 0.045)

n=160 AIC 0 830 170 0 0 0 850 150 0
CAIC 0 830 170 0 0 850 150
Cor M 0 0506 0.511 0 0498 0.706 0.709
(SD) (0 0.054 0.054) (0 0.043 0.033 0.032)

Note. p,= the true number of regressors including an intercept, p = the number of regressors

including an intercept in a model, Deleted = the number of deleted cases in the simulation, Cor = the
correlation between X, ' w. and y. overi=1,...,n, M and SD = the mean and standard deviation

of Cor’s over 1,000 replications.



Table 6. 1,000 times the proportions of model selection in negative binomial regression by the AIC

and CAIC when the shape parameter is given

P, =2, B, =(-0.02, -0.02)' Po =3, B, =(-0.02, —0.02, - 0.02)'
p: 1 2 3 Deleted 1 2 3 4 Deleted

p=

n=40 AlIC 199 654 147 9 150 200 498 152 46
CAIC 208 657 135 172 210 494 124

n=_80 AlIC 35 798 167 0 27 94 729 150 5
CAIC 35 812 153 32 98 726 144

n=160 AIC 5 834 161 0 1 16 827 156 0
CAIC 5 837 158 1 16 829 154

r=>2

n=40 AlIC 38 805 157 0 26 112 718 144 6
CAIC 41 807 152 27 113 723 137

n=_80 AlIC 2 843 155 0 0 13 818 169 0
CAIC 2 849 149 0 13 820 167

n=160 AIC 0 821 170 0 0 0 838 162 0
CAIC 0 821 179 0 0 839 161

r=4

n=40 AlIC 2 832 166 0 0 16 855 129 0
CAIC 2 836 162 0 16 858 126

n=_80 AlIC 0 852 148 0 0 0 835 165 0
CAIC 0 855 145 0 0 837 163

n=160 AIC 0 843 157 0 0 0 849 151 0
CAIC 0 843 157 0 0 849 151

Note. p,= the true number of regressors including an intercept, p = the number of regressors

including an intercept in a model, Deleted = the number of deleted cases in the simulation, » = the
given shape parameter. An underscore indicates that the proportion of correct model selection by the
AIC is larger than that by the CAIC.



Table 7. 1,000 times the proportions of model selection in negative binomial regression by the AIC

and CAIC when the shape parameter is unknown

P, =2, B, =(-0.02, -0.02)' Po =3, B, =(-0.02, —0.02, - 0.02)'
p: 1 2 3 Deleted 1 2 3 4 Deleted

p=

n=40 AlIC 191 639 170 41 144 176 508 172 186
CAIC 237 642 121 218 203 457 122

n=_80 AlIC 35 793 172 2 27 92 718 163 39
CAIC 43 811 146 34 111 726 129

n=160 AIC 5 830 165 0 1 13 826 160 6
CAIC 5 843 152 1 15 837 147

r=>2

n=40 AlIC 38 797 165 92 36 86 697 181 798
CAIC 58 815 127 52 117 700 131

n=_80 AlIC 2 829 169 18 0 19 807 174 756
CAIC 2 856 142 1 19 832 148

n=160 AIC 0 813 187 0 0 0 831 169 694
CAIC 0 828 172 0 0 846 154

Note. p,= the true number of regressors including an intercept, p = the number of regressors

including an intercept in a model, Deleted = the number of deleted cases in the simulation, » = the
unknown shape parameter. An underscore indicates that the proportion of correct model selection by
the AIC is larger than that by the CAIC.



Table 8. 1,000 times the proportions of model selection in gamma regression by the AIC and CAIC
when the shape parameter is given

Po=2, B, =1L 1’ po=3 B,=(2, 1 D
p: 1 2 3 Deleted 1 2 3 4 Deleted
a=1
n=40 AIC 189 656 155 6 433 210 261 96 50
CAIC 210 654 136 460 209 247 84
n =280 AIC 41 797 162 0 235 213 437 115 2
CAIC 41 805 154 246 213 429 112
n=160 AIC 2 845 153 0 74 139 647 140 0
CAIC 2 849 149 75 142 643 140
a=2
n=40 AIC 41 822 137 0 243 218 429 110 2
CAIC 42 827 131 253 220 421 106
n =280 AIC 2 843 155 0 80 137 652 131 0
CAIC 2 849 149 85 140 645 130
n=160 AIC 0 848 152 0 6 37 819 138 0
CAIC 0 850 150 6 37 820 137
a=4
n=40 AIC 1 845 154 0 70 154 629 147 0
CAIC 1 846 153 71 154 629 146
n =280 AIC 0 821 179 0 2 48 816 134 0
CAIC 0 823 177 2 48 816 134
n=160 AIC 0 835 165 0 0 1 848 151 0
CAIC 0 836 164 0 1 848 151

Note. p,= the true number of regressors including an intercept, p = the number of regressors

including an intercept in a model, Deleted = the number of deleted cases in the simulation, o = the
given shape parameter. An underscore indicates that the proportion of correct model selection by the
AIC is larger than that by the CAIC.



Table 9. 1,000 times the proportions of model selection in gamma regression by the AIC and CAIC

when the shape parameter is unknown

Po=2, B, =1L 1’ po=3 B,=(2, 1 D
p: 1 2 3 Deleted 1 2 3 4 Deleted
a=1
n=40 AIC 185 647 168 27 394 215 270 121 72
CAIC 228 645 127 475 197 239 89
n =280 AIC 37 790 173 2 230 203 444 123 8
CAIC 47 810 143 258 215 423 104
n=160 AIC 2 844 154 0 73 135 647 145 0
CAIC 2 857 141 79 139 646 136
a=2
n=40 AIC 39 812 149 31 236 203 433 128 30
CAIC 47 827 126 294 218 403 85
n =280 AIC 1 832 167 5 81 135 647 137 2
CAIC 3 850 147 93 154 633 120
n=160 AIC 0 836 164 0 6 38 816 140 0
CAIC 0 850 150 6 41 823 130
a=4
n=40 AIC 0 833 167 615 70 141 630 159 408
CAIC 2 872 126 79 165 616 120
n =280 AIC 0 807 193 457 2 42 813 143 228
CAIC 0 830 170 4 50 828 118
n=160 AIC 0 841 159 212 0 1 835 164 82
CAIC 0 850 150 0 1 845 154

Note. p,= the true number of regressors including an intercept, p = the number of regressors

including an intercept in a model, Deleted = the number of deleted cases in the simulation, o = the
unknown shape parameter. An underscore indicates that the proportion of correct model selection by
the AIC is larger than that by the CAIC.



Table 10. 10,000 times the simulated proportions of endpoints of one-sided confidence

intervals below the population value —2E, (ILI\ZL) for the exponential family

Nominal coverage 50 250 500 5000 9500 9750 9950
A4=1 Based on studentization
n=25 Wald 208 617 957 5762 9633 9806 9963
-2Ex() CF2 151 532 889 5886 9583 9762 9939
=2.043 CF3 77 350 707 5886 9709 9860 9983
n=>50 Wald 145 495 801 5511 9612 9814 9961
-2Ex() CF2 117 438 754 5606 9578 9781 9943
=2.020 CF3 77 344 670 5606 9652 9839 9978
n=200 Wald 81 323 613 5166 9559 9776 9971
-2Ex() CF2 70 300 585 5222 9543 9755 9959
=2.005 CF3 62 283 559 5222 9559 9774 9971
Ay=4 Based on studentization
n=25 Wald 215 596 958 5734 9652 9823 9956
-2Ex() CF2 164 504 868 5856 9602 9783 9934
=-0.730 CF3 67 339 687 5856 9718 9869 9980
n=>50 Wald 146 437 731 5423 9561 9776 9962
-2Ex() CF2 114 398 678 5513 9529 9731 9935
=-0.752 CF3 63 316 590 5513 9608 9824 9968
n=200 Wald 82 353 623 5250 9568 9786 9951
-2Ex() CF2 69 332 609 5291 9554 9765 9946
=-0.768 CF3 58 306 587 5291 9570 9785 9951
A=1 Based on standardization using the ASE of n 'AIC=2/n"?
n=25 Wald 124 471 838 5762 9720 9879 9986
-2Ex() CF2 82 385 761 5893 9683 9844 9969
=2.043 CF3 77 377 741 5893 9693 9860 9976
n=>50 Wald 117 402 747 5511 9674 9848 9982
-2Ex() CF2 86 353 702 5604 9638 9822 9965
=2.020 CF3 80 348 696 5604 9643 9827 9967
n=200 Wald 67 307 590 5166 9565 9794 9969
-2Ex() CF2 61 291 573 5222 9545 9778 9959
=2.005 CF3 61 287 572 5222 9548 9779 9960

Note. —2E ()=-2E, (ILI\ZL) , CF2 (CF3) = Cornish-Fisher confidence interval with second

(third)-order accuracy, ASE = asymptotic standard error.
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