
 

 

 

 

 

Essays on Statistical and Machine Learning 

Methods for Dependent Data Analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

学生番号 202081 氏名 Ziyan Zhao 

 

指導教員名 Hiroyuki Sano  

Qingfeng Liu 

Yongki Kim 

 

２０２２年度提出 



Essays on Statistical and Machine Learning

Methods for Dependent Data Analysis

Ziyan Zhao

Otaru University of Commerce

January 19, 2023



Abstract

This dissertation proposes several novel statistical and machine learning meth-

ods, derives in-depth theoretical results, and conducts extensive empirical stud-

ies for dependent data analysis.

First, we propose a new factor model—time varying structural approximate

dynamic factor model—by introducing time varying parameters into the classi-

cal approximate dynamic factor model, so that it can capture complex dynamic

economic characteristics. Second, we propose a new estimation method—tying

maximum likelihood estimation—using the parameter tying technique in Few-

shot Learning to improve the performance of statistical and econometric models

where most time series have long sample periods, while the other time series

only have a few observations. Lastly, we provide new empirical insights into

the impact of the COVID-19 pandemic on the consumer price index using a

difference-in-difference approach; in addition, our static and dynamic empirical

framework provides a valuable reference for other similar studies.
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Chapter 1

Introduction

This dissertation mainly consists of three independent chapters surrounding

statistical and machine learning methods developed to solve some problems in

dependent data analysis.

In the second chapter, which is co-authored with Qingfeng Liu (see SSRN

working paper, Zhao and Liu, 2021)1, we propose a time-varying structural ap-

proximate dynamic factor (TVS-ADF) model by extending the ADF model in

state-space form. The TVS-ADF model considers time-varying coefficients and

a time-varying variance–covariance matrix of its innovation terms, so that it can

capture complex dynamic economic characteristics. We also propose an effec-

tive Markov chain Monte Carlo (MCMC) algorithm to estimate the TVS-ADF.

To avoid the overparameterization caused by the time-varying characteristics

of the TVS-ADF, we include the shrinkage and sparsification approaches in

the MCMC algorithm. Extensive artificial simulations demonstrate that the

TVS-ADF has better forecast performance than the ADF in almost all settings

for different numbers of explained variables, numbers of explanatory variables,

sparsity levels, and sample sizes. An empirical application to macroeconomic
1I undertake the main work of this research. This study was presented in the Asian meeting

of the econometric society in China, 2022.
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forecasting also indicates that our model can substantially improve predictive

accuracy and capture the dynamic features of an economic system better than

the ADF.

In the third chapter, which is co-authored with Qingfeng Liu and Masamune

Iwasawa (see SSRN working paper, Iwasawa et al., 2022)2, we propose a tying

maximum likelihood estimation (TMLE) method to improve the performance of

estimation of statistical and econometric models in which most time series have

long sample periods, whereas the other time series are very short. The main

idea of the TMLE is to tie the parameters of the long time series with those of

the short time series together by introducing some restrictions on parameters so

that some useful information can be transferred from the long series to the short

series, which can help improve the estimation accuracy of parameters tied. We

first provide asymptotic properties of the TMLE and show its finite-sample risk

bound under a fixed tuning parameter which determines the strength of tying.

In addition, we provide a bootstrap procedure to select the tuning parameter.

Then a finite-sample theory about this bootstrap procedure is developed, which

tells us how to conduct the bootstrap procedure effectively. Extensive artificial

simulations and empirical applications show that the TMLE has an outstanding

performance in point estimate and forecast.

In the fourth chapter, I provide empirical insight into the impact of the

COVID-19 pandemic on the consumer price index (CPI) using a difference-in-

difference approach (see Zhao, 2022). Using monthly panel data for eight CPI

categories for China and considering two specifications (i.e., the average effect

and month-by-month effect), we reveal that the pandemic had a persistent neg-

ative impact on housing and daily consumables, whereas no evidence was found

for a strong effect on health care. Regarding education, culture, and recreation,

the pandemic mainly had a persistent positive effect over the initial months of
2All authors contribute equally to this work.
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the pandemic and then a negative effect for several months. In addition, the

pandemic could have a positive effect on food, tobacco, and liquor, while it may

have a persistent negative impact on clothing, transport, and communications.

Furthermore, there could be a positive effect, which has increased slightly since

the pandemic outbreak, on other articles and services.
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Chapter 2

Time Varying Structural Approximate Dy-

namic Factor Model for Dependent Data

2.1 Introduction

Factor models have become increasingly popular in various economics and fi-

nance applications over the past two decades. For instance, latent factors can

represent common shocks (e.g., technological shocks and financial crises) in

macroeconometrics (e.g., Giannone and Lenza, 2010 and McCracken and Ng,

2016). Additionally, latent factors can represent the prices for unmeasured skills

in microeconometrics (e.g., Cawley et al., 1997 and Carneiro et al., 2003), while

in finance, they can represent unobservable factor returns (e.g., Chamberlain

and Rothschild, 1982 and Zivot and Wang, 2006).

As a pioneer of the factor model, Spearman (1927) introduced an exact

static factor model for analyzing independent and identically distributed (i.i.d.)

data. Subsequent studies expanded the model to time series data analysis, with

Geweke (1977) proposing an exact dynamic factor model and Chamberlain and

Rothschild (1982) and Connor and Korajczyk (1986) an approximate static fac-

tor model. In a static factor model, the factors only exert a contemporaneous
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effect on the dependent variable, whereas in a dynamic factor model, the fac-

tors also affect the dependent variable through their lags. In the exact factor

model, innovation (idiosyncratic component) has no cross-sectional dependence,

unlike in the approximate factor model, where this is allowed. Combining the

approximate and dynamic features of these models, Forni et al. (2009) proposed

the approximate dynamic factor (ADF) model in state-space form, in which the

dynamics of the factors capture comovements among the model variables. More-

over, the cross-sectional dependence of the innovations is permitted to reflect

the impact of an innovation with respect to one variable on the other variables.

However, the ADF has a limitation, in that it does not consider the time-

varying characteristics of coefficients (factor loadings) and the variance covari-

ance matrix of the innovations, although this type of time-varying character-

istics exists in many macroeconomic variables and financial time series. In an

economic system, the relationships between economic variables can be time vari-

ant. Capturing the time-varying characteristics of an economic system is thus

a crucial task in econometrics. Many studies have been devoted to this topic.

For instance, Primiceri (2005) used time-varying parameters to measure policy

changes and imply shifts in private sector behavior. Karakatsani and Bunn

(2008) characterized the responses of prices to various market fundamentals us-

ing time-varying coefficients. Galí and Gambetti (2015) used time-varying pa-

rameters to analyze the response of stock prices to exogenous monetary policy

shocks. Aharon and Demir (2022) used time-varying parameters to characterize

the connectedness between returns for non-fungible tokens and other financial

assets (i.e., equities, bonds, currencies, gold, oil, Ethereum) from January 2018

to June 2021.

Recently, vector autoregressive (VAR) models with time-varying parameters

have enjoyed significant popularity in time series analysis. For example, based
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on the traditional VAR model proposed by Sims (1980), Cogley and Sargent

(2005) and Cogley (2005) proposed a Bayesian VAR model with time-varying

coefficients and variances of the innovations to capture the dynamics of economic

data. However , in their models, the correlation between the elements of inno-

vation are assumed to be time invariant. To allow for the time-varying covari-

ance of the innovations, Primiceri (2005) proposed time-varying structural VAR

(TVP-VAR). TVP-VAR can characterize the nonlinearities and time variation

of both the relationships between variables and innovations. The TVP-VAR

has been widely applied to time series analysis (see Koop et al. 2009; Naka-

jima et al. 2011; Korobilis 2013; Baumeister and Peersman 2013; Koop et al.

2019; Huber et al. 2020; Aharon and Demir 2022). The time-varying structure

of the TVP-VAR, which can capture the dynamics of economic data, may be

successfully applied to the ADF to address its time-invariant limitation.

In this study, we propose a new model—a time-varying structural approxi-

mate dynamic factor (TVS-ADF) model—by extending the ADF. The contri-

butions of this study are threefold. First, we introduce a time-varying structure

similar to that of the TVP-VAR into the ADF to form the TVS-ADF, which

fully considers the time variations of the coefficients and the variance–covariance

matrix of the innovations.

Second, we provide a Markov chain Monte Carlo (MCMC) algorithm for

estimating the TVS-ADF. Although maximum likelihood estimation could be

considered an alternative, the maximization of the likelihood function would

be extremely difficult, if not impossible, when the dimensions of the TVS-ADF

parameters are very high. The MCMC algorithm is thus a realizable choice for

high-dimensional situations.

Third, we provide solutions for shrinkage and sparsification to avoid overpa-

rameterization. This is because the flexibility of the TVS-ADF arising from its
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time-varying characteristics comes at the cost of overparameterization, which

can lead to perfect in-sample fit but poor out-of-sample forecast performance.

To deal with this issue, we propose shrinkage and sparsification solutions. To

shrink the TVS-ADF, we use the continuous shrinkage prior (Dirichlet–Laplace

prior) proposed by Bhattacharya et al. (2015), which can be expressed as global–

local scale mixtures of Gaussians and facilitate computation for high-dimensional

situations. As Bhattacharya et al. (2015) pointed out, under the Bayesian

paradigm, sparsity is routinely induced through two-component mixture pri-

ors with a probability mass of zero; however, such priors encounter daunting

computational problems in high dimensions. Hence, we do not consider the

sparsification-only approach for our TVS-ADF. As another solution, Huber et al.

(2020) showed that carrying out sparsification after shrinkage can yield better

predictive performance in some empirical applications. In their algorithm, the

shrinkage procedure, which was conducted first, enabled them to adopt a spar-

sification procedure with low computation cost. We also adopt the approach of

Huber et al. (2020) with both shrinkage and sparsification for our TVS-ADF.

It is worth mentioning that, although there are some studies that have de-

veloped dynamic factor models with time-varying parameters, they are different

from our model. The models in these studies can be classified into two categories:

parametric and semiparametric models. As for parametric models,1 Del Negro

and Otrok (2008) allowed the time-varying factor loadings and stochastic volatil-

ity of the innovations, but the variance–covariance matrix of the innovations is

diagonal. Mumtaz and Surico (2012) allowed time-varying coefficients in the

state equation of the factors, but the factor loadings and the variance of the

innovations are time invariant. Combining the different characteristics of these

two models, Bjørnland and Thorsrud (2019) proposed a new factor model in
1Note that we only focus on dynamic factor models in which the parameters are modeled as

evolving stochastically. For positing a break in the parameters, see Stock and Watson (2016)
for an overview.
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which more time-varying parameters are allowed, but the variance–covariance

matrix of the innovations is still diagonal. Marcellino et al. (2016) proposed a

mixed frequency dynamic factor model in which the disturbances of both the

factor and innovations have time-varying stochastic volatilities, but the factor

loadings are time invariant. Mikkelsen et al. (2019) considered time-varying fac-

tor loadings, but the variance matrix of the innovations is both time invariant

and diagonal. Based on Bjørnland and Thorsrud (2019) and Marcellino et al.

(2016), Thorsrud (2020) introduced time-varying factor loadings with some re-

strictions, but the variance matrix of the innovations is still assumed to be both

time invariant and diagonal. It is evident that all the aforementioned models

assume the variance–covariance matrix of the innovations to be diagonal; in

other words, innovations are not allowed to have cross-sectional dependence.

As Barigozzi (2018) pointed out, the dynamic factor models in which innova-

tions are allowed to have cross-sectional dependence are the most realistic. By

contrast, our TVS-ADF not only considers the cross-sectional dependence of

the innovations but also allows the variance–covariance matrix of the innova-

tions to be time varying. Furthermore, in the models above, either the factor

loadings or the variances of the innovations are time invariant. By contrast, our

TVS-ADF allows both the factor loadings and the variance–covariance matrix

of the innovations to be time-varying.

For semiparametric models, the main idea for capturing the dynamics of

economic data is to model factor loadings as a function of time or observed

variables (e.g., Motta et al., 2011; Eichler et al., 2011; Su and Wang, 2017; Ma

et al., 2020; Cataño et al., 2021; Barigozzi et al., 2021; Pelger and Xiong, 2021).

The main difference from our approach is that the variance–covariance matrix of

the innovations in these models is specified as either diagonal or time invariant.

Another drawback of these models is that semiparametric factor loadings are
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not easy to interpret in empirical applications.

The TVS-ADF is closely related to the class of factor augmented VAR

(FAVAR) models with time-varying parameters. The models in this class have a

different structure from the TVS-ADF and consist of two equations: the factor

regression equation and the VAR equation. Most models in this class cannot

capture all the time-varying characteristics that can be captured by our TVS-

ADF. For example, the model proposed by Bianchi et al. (2009) includes the

time-varying parameters in the VAR equation, but the factor loadings and the

variances of innovations in the factor regression equation are time invariant.

Liu et al. (2011) built a FAVAR model with time-varying parameters, in which

the factor loadings are allowed to be time varying, but the variances of the

innovations in the factor regression equation and the parameters in the VAR

equation are time invariant. Korobilis (2013) proposed the time-varying param-

eter factor augmented VAR (TVP-FAVAR) model, in which the parameters in

the VAR equation and the variances of the innovations in the factor regression

equation are allowed to be time varying, but the factor loadings are constant.

Subsequently, based on Korobilis (2013), Koop and Korobilis (2014) allowed the

factor loadings to be time varying in the TVP-FAVAR. As mentioned below,

this is different from our TVS-ADF, as are the other variants. All these models

are different from our TVS-ADF as follows. Their variance–covariance matrices

of the innovations in the factor regression equation are assumed to be diagonal.

Hence, they cannot allow innovations to have cross-sectional dependence. By

contrast, our TVS-ADF allows the cross-sectional dependence of the innovations

and their time-varying variance–covariance matrix. Additionally, in the factor

regression equations of some models above, either the factor loadings are time

invariant or the innovations are time invariant. However, we allow them both

to be time varying in the TVS-ADF.
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The rest of the paper is organized as follows. Section 2 describes the proposed

TVS-ADF model. Section 3 provides a detailed description of the estimation

methodology with shrinkage and sparsification for our TVS-ADF. Section 4

conducts extensive artificial simulations. Section 5 carries out an empirical

application of macroeconomic forecasting. Section 6 concludes. Further results

about the artificial simulations and empirical simulation are provided in the

Appendix.

2.2 Model

We construct the time-varying structural approximate dynamic factor model

(TVS-ADF) as follows:

Yt = BtXt + ΛtFt + ξt, ξt ∼ N(0,Γξ
t ), (2.1)

Ft = C1Ft−1 + C2ηt, ηt ∼ N(0, I), (2.2)

where Yt is an n×1 vector of explained variables, Bt is an n×m matrix of time-

varying coefficients, Xt is an m × 1 vector of observed explanatory variables,

factor loading Λt is an n × r matrix, unobserved factor Ft is an r × 1 vector,

ξt is an n× 1 vector of innovations allowed to have cross-sectional dependence,

C1 is an r × r matrix of coefficients, C2 is an r × q matrix of coefficients, ηt is

a q × 1 vector of unobservable innovations, I is a q × q identity matrix, and Γξ
t

is an n× n positive definite matrix. Specifically,

Yt =



y1t

y2t
...

ynt


, Bt =



β′
1t 0 · · · 0

0 β′
2t · · · 0

...
... . . . ...

0 0 · · · β′
nt


, Xt =



x1t

x2t
...

xnt


,
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where β′
it is an 1×mi vector, xit is an mi×1 vector, i = 1, · · · , n, and

∑n
i=1mi =

m. Λt = (λ1t, · · · λnt)′, where λit is an r × 1 vector, i = 1, · · · , n. Ft =

(f ′t , f
′
t−1, · · · , f ′t−p)

′, where ft is a q× 1 vector consisting of q factors, and q(p+

1) = r.

C1 =



c1 c2 · · · cp cp+1

Iq 0 · · · 0 0

0 Iq · · · 0 0

...
... . . . ...

...

0 0 · · · Iq 0


, C2 =



Iq

0

0

...

0


,

where ci is a q × q matrix, i = 1, · · · , p+ 1, Iq is a q × q identity matrix. As Γξ
t

is positive definite, it can be factorized with Cholesky decomposition:

Γξ
t = A−1

t HtA
−1′

t ,

At =



1 0 · · · 0

a21,t 1 · · · 0

...
... . . . ...

an1,t an2,t · · · 1


, Ht =



h1t

h2t

. . .

hnt


.

This decomposition of the variance–covariance matrix above is a common

technique used in time-varying models (see Cogley and Sargent, 2005, Cogley,

2005, Primiceri, 2005, Korobilis, 2013 and Koop and Korobilis, 2014). Similar

to Primiceri (2005), we have the following transformed formula of (1), which is

convenient for calculating the conditional distributions of At and Ht:

Yt = BtXt + ΛtFt +A−1
t H

1/2
t et, et ∼ N(0, I). (2.3)

Let βt = (β′
1t, · · · , β′

nt)
′, λt = (λ′1t, · · · , λ′nt)′, at be the vector of the non-

zero and non-one elements of At (stacked by rows) and ht be the vector of
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the diagonal elements of Ht. The dynamics of the time-varying parameters are

specified as follows:

βt = βt−1 + d̄t, d̄t ∼ N(0, D̄), (2.4)

λt = λt−1 + d̃t, d̃t ∼ N(0, D̃), (2.5)

at = at−1 + ut, ut ∼ N(0, S), (2.6)

log(ht) = log(ht−1) + γt, γt ∼ N(0,Σ), (2.7)

where the diagonal matrices D̄ = diag
(
D̄1, · · · , D̄n

)
m×m

, D̃ = diag
(
D̃1, · · · , D̃n

)
nr×nr,

for i = 1, · · · , n, D̄i is an mi ×mi diagonal matrix that denotes the variance of

βit, D̃i is an r × r diagonal matrix that denotes the variance of λit, the diag-

onal matrix S = diag (S2, · · · , Sn)∑n
i=2(i−1)×

∑n
i=2(i−1), for i = 2, · · · , n, Si is a

(i− 1)× (i− 1) diagonal matrix that denotes the variance of (ai1,t, · · · , aii−1,t).

Note that et, ηt, d̄t, d̃t, ut, and γt are mutually independent, and D̄, D̃, S,

and Σ are all diagonal matrices. The random walk forms of equations (2.4) –

(2.7) do not require any coefficient, which can reduce the number of parameters,

especially for a large n compared to more general autoregressive specifications.

As previously discussed, in contrast to the ADF, our model considers ad-

ditional issues related to the observed explanatory variables, time-varying co-

efficients, and time-varying variance–covariance matrix of the innovations. In-

corporating the explanatory variables is intended to capture the impacts of

known important economic variables on the explained variables other than the

latent factors. Allowing for time variation in both the coefficients and variance–

covariance matrix of the innovations can capture additional dynamic features of

the economy. Specifically, the drifting coefficients, Bt and Λt, can capture time

variation in the parameters or nonlinearities, which reflect the dynamic impact
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of the explanatory variables on the dependent variables. Furthermore, the time-

varying variance–covariance matrix of multivariate stochastic volatility, Γξ
t , can

capture possible dynamic heteroscedasticity in the innovations and dynamic

nonlinearities in the simultaneous relationships between model variables.

However, these time-varying parameters can lead to overparameterization.

For instance, economic variables Xt may sometimes only have a very small effect

on Yt. Therefore, if we do not push βt toward zero, it will cause poor results.

Additionally, the impact of some variables on Yt could be time invariant during

a period. In such cases, it is critical to push the variance of βt toward zero in

that period; otherwise, it will cause excessive aggregate movements in βt over

time. As mentioned before, we take two approaches to shrink and sparsify the

TVS-ADF to avoid overparameterization: (i) only shrink the model using the

approach of Bhattacharya et al. (2015) and (ii) both shrink and sparsify the

model using the approach of Huber et al. (2020). We use notation TVS-ADF(s)

for the model that is only shrunk and TVS-ADF(ss) for the model that is both

shrunk and sparsified. Shrinking or sparsifying our model involves the shrinkage

or sparsification of βt, λt, at, log(ht), D̄, D̃, S, and Σ, that is, by shrinking the

elements of these matrices toward zero or making some small elements become

exactly zero. The methods for shrinkage and sparsification are incorporated

into the MCMC algorithm and are described in detail in the next section.

Identification of factors Without restrictions, the loadings and factors can-

not be identified, since, for an arbitrary r × r invertible matrix Q, it is evident

that ΛtFt = ΛtQQ
−1Ft. Obviously, there are r2 free elements in Q. Hence, we

need r2 restrictions to identify Λt and Ft. Note that the r2 restrictions already

exist in our model specification.

First, in the TVS-ADF, the variance–covariance matrix of ηt is set as an

identity matrix, which is a standard normalization assumption for factor mod-
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els. This provides r(r+1)/2 restrictions on the conditional variance–covariance

matrix of Ft. Second, diagonal D̃i for all i (i.e., the loadings of different latent

factors and their lags are independent) implies that the variance–covariance

matrix of Λt (i.e., EΛ′
tΛt − (EΛt)

′EΛt) is diagonal, which provides additional

r(r−1)/2 restrictions. Finally, Λt and Ft are identified with the r2 restrictions.

We have two remarks about identification. First, regarding time variation

in the coefficients and factors, there is the concern that Q can be time varying

instead of being constant. However, this is impossible under our model setting

because rescaled factors Q−1
t Ft and rescaled loadings ΛtQt cannot satisfy (2.2)

and (2.5). Second, if we multiply both Λt and Ft by −1, then −Λt×−Ft = ΛtFt.

Hence, the signs of loadings Λt and factors Ft are indeterminate. This is a

common issue in all factor models. Please refer to Hamilton et al. (2007) for

strategies of solving this issue. Of course, this is not a problem if we only focus

on the forecasting of dependent variables or the scales of the latent factors and

factor loadings.

The number of factors In this study, we assume that the number of fac-

tors is given. One can determine the number of factors according to some prior

information or experience. Although there are some studies about the deter-

mination of the number of factors, these methods are mostly based on factor

models with time-invariant parameters (e.g., Bai and Ng, 2002; Amengual and

Watson, 2007; Hallin and Liška, 2007; Onatski, 2010; Alessi et al., 2010; Ahn

and Horenstein, 2013; Trapani, 2018). By contrast, the parameters in our model

are time varying, and the total number of factors depends on q and p. It is dif-

ficult to select an optimal number for q and p. However, as this issue is out of

the scope of this study, we will attempt to solve it in our future research.
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2.3 MCMC algorithm for estimation

We use the MCMC algorithm to estimate the model. As it is difficult and

complex to obtain the joint posterior distribution of all parameters, we simulate

the joint posterior distribution using Gibbs sampling, sequentially drawing the

parameters of the TVS-ADF from the conditional posterior distributions. The

detailed algorithm for the Gibbs sampling comprises seven steps, as follows:

2.3.1 Step 1: drawing Bt and Λt

Bt and Λt are drawn together, conditional on the remaining parameters. To

simplify the drawing, shrinkage, and sparsification, we first undertake some

transformations and introduce some additional notations. Note that in this

step, we only carry out shrinkage on Bt and Λt, while their sparsification will

be illustrated in step 5.

According to (2.1), for i = 1, · · · , n, we have

yit = β′
itxit + λ′itFt + ξit, ξit ∼ N(0,Γξ

t,ii).

Then, by conflating βit and λit and combining (2.4) and (2.5), we have

yit = b′itpit + ξit, ξit ∼ N(0,Γξ
t,ii),

bit = bit−1 + vit, vit ∼ N(0, Di), (2.8)

where b′it = (bi1t, bi2t, · · · , bikit) = (β′
it, λ

′
it), ki = mi + r, pit = (x′it, F

′
t )

′, and

Di = diag(D̄i, D̃i).

We introduce an ki × 1 vector bi = (bi1, bi2, · · · , biki
)′. Then, following
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Frühwirth-Schnatter and Wagner (2010), we can transfer (2.8) to:

yit = b̃′itD
1/2
i pit + b′ipit + ξit, ξit ∼ N(0,Γξ

t,ii)

b̃it = b̃it−1 + ṽit, ṽit ∼ N(0, Iki
), (2.9)

where Iki
is an ki × ki identity matrix, b̃i0 = 0 and

b̃it = (b̃i1t, · · · , b̃ikit)
′, b̃ijt =

bijt − bij√
Dij

, j = 1, · · · , ki, (2.10)

where Dij is the j-th diagonal element of Di. Then, (2.9) also can be written

as

yit = α′
izit + ξit, (2.11)

with αi = (
√
Di1, · · · ,

√
Diki

, bi1, · · · , biki
)′, zit = ((b̃it � pit)

′, p′it)
′, and � de-

notes element-wise multiplication.

Prior As we want to shrink parameters βit, λit, and Di, which have been

collected and transformed to αi, toward zero, we use a special prior, namely

the Dirichlet–Laplace prior proposed by Bhattacharya et al. (2015). Specifi-

cally, αij , j = 1, · · · , 2ki denotes the j-th element of αi and follows a Gaussian

distribution:

αij | ωij , ϵij , Ji ∼ N(0, ωijϵ
2
ijζ

2
i ), (2.12)

with

ωij ∼ e(1/2) ϵij ∼ D(a, · · · , a) ζi ∼ G(2kia, 1/2), (2.13)

where e(·) denotes the exponential distribution, a is specified as (2ki)
−(1+ϕ)

with ϕ being a positive number close to zero, D(·) is the Dirichlet distribution,
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and G(·) refers to the Gamma distribution.

This prior is adopted for the especially popular method of global–local

shrinkage (e.g., Polson and Scott, 2010), which is both global (i.e., common

to all parameters) and local (i.e., specific to each parameter). The shrinkages

of the 2ki parameters (i.e., global shrinkage) are controlled by ζi, while ωij and

ϵij handle the shrinkage of the j-th parameter (i.e., local shrinkage). Regarding

equation (2.13), ζi and ωij both take very small positive values with a high

probability, given the properties of the exponential and Gamma distributions;

so does ϵij because the marginal distributions of D(a, · · · , a) are beta distribu-

tions with a < 1/2. Therefore, in this type of setup, the value of αij will be

close to zero with a high probability. Note that a plays an important role in

determining the shrinkage behavior of the Dirichlet–Laplace prior. Following

Huber et al. (2020), we draw a from its posterior distribution, which is obtained

based on the prior of a uniform distribution bounded between (2ki)
−1 and 1/2.

Drawing process Now, we show how to simulate the full history of Bt and

Λt, which have been transformed into b̃it in (2.9), using the Dirichlet–Laplace

prior.

We need some additional notations, as follows. Let bTi = (bi1, · · · , biT ),

bT = (bT1 , · · · , bTn ), b̃Ti = (b̃i1, · · · , b̃iT ), and b̃T = (b̃T1 , · · · , b̃Tn ), similarly for FT ,

AT , HT , Y T , XT . Furthermore, let ωi = (ωi1, · · · , ωi2ki
), ϵi = (ϵi1, · · · , ϵi2ki

),

and M1 = (ωi, ϵi, ζi, a).

According to Carter and Kohn (1994) and Frühwirth-Schnatter (1994), the

conditional probability density function of b̃it can be factorized as

f(b̃Ti |ΘT
1 ) = f(b̃iT |ΘT

1 )

T−1∏
t=1

f(b̃it|b̃it+1,Θ
T
1 ), (2.14)

where ΘT
1 = (FT , AT ,HT , αi,M1, Y

T , XT ) and f(·|·) stands for the conditional
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probability density function. Obviously, all conditional density functions in the

equation are normal distributions. To conduct the drawing process, we first

need to obtain the mean and variance of each conditional distribution.

For f(b̃iT |ΘT
1 ), we use the Kalman filter for (2.9) as follows:

b̃it|t =b̃it|t−1 + Γb̃i
t|t−1D

1/2
i pit[p

′
itD

1/2
i Γb̃i

t|t−1D
1/2
i pit + Γξ

t|t−1,ii]
−1[yit − b̃′it|t−1D

1/2
i pit − b′ipit],

Γb̃i
t|t =Γb̃i

t|t−1 − Γb̃i
t|t−1D

1/2
i pit[p

′
itD

1/2
i Γb̃i

t|t−1D
1/2
i pit + Γξ

t|t−1,ii]
−1p′itD

1/2
i Γb̃i

t|t−1,

b̃it+1|t =b̃it|t,

Γb̃i
t+1|t =Γb̃i

t|t + Iki
, (2.15)

where b̃i1|0 = 0 and Γb̃i
1|0 is a positive number close to zero. The final iteration

of the Kalman filter provides the mean and variance of f(b̃iT |ΘT
1 ).

Following Carter and Kohn (1994), to obtain the mean and variance of

f(b̃it|b̃it+1,Θ
T
1 ), we first conduct some equation transformations. We consider

b̃it+1 = b̃it + ṽit+1 as additional observations on b̃it. We then pre-multiply

b̃it+1 = b̃it + ṽit+1 by L−1, where L is from the Cholesky decomposition of

Iki = L′∆iL, and we have L−1b̃it+1 = L−1b̃it + L−1ṽit+1.

We define bit+1 = L−1b̃it+1 and vit+1 = L−1ṽit+1. Then, for the j-th row of

bit+1,

bit+1,j = L−1
j b̃it + vit+1,j , vit+1,j ∼ N(0,∆i,jj). (2.16)

For j = 1, · · · , ki, let

b̃it|t,j = E[b̃it|Θt
1, b̃it+1,1, · · · , b̃it+1,j−1]

Γb̃i
t|t,j = V ar[b̃it|Θt

1, b̃it+1,1, · · · , b̃it+1,j−1],

where b̃it+1,j denotes the j-th row of b̃it+1.
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It is straightforward to obtain the following observation update equations

using the Kalman filter for b̃it|t,j−1:

b̃it|t,j = b̃it|t,j−1 + Γb̃i
t|t,j−1L

−1′

j [L−1
j Γb̃i

t|t,j−1L
−1′

j +∆i,jj ]
−1[b̄it+1,j − L−1

j b̃it|t,j−1],

Γb̃i
t|t,j = Γb̃i

t|t,j−1 − Γb̃i
t|t,j−1L

−1′

j [L−1
j Γb̃i

t|t,j−1L
−1′

j +∆i,jj ]
−1L−1

j Γb̃i
t|t,j−1,

where b̃it|t,0 = b̃it|t and Γb̃i
t|t,0 = Γb̃i

t|t, which are the outcomes of the Kalman

filter in (2.15). To run the updated equations above, we need to obtain b̄it,j

for t = 1, · · · , T . To do this, we first draw b̃iT from f(b̃iT |ΘT
1 ); then, b̄iT,j

can be obtained by biT = L−1b̃iT . Based on b̃iT , b̃iT−1 can be drawn from

f(b̃iT−1|b̃iT ,ΘT
1 ), and b̄iT−1,j can be obtained as b̄iT−1 = L−1b̃iT−1. The process

is similar for b̄iT−2,j , · · · , b̄i1,j . Now, we can run the above update equations

ki times. The final iteration gives the expectation and variance of b̃it|b̃it+1,Θ
T
1 .

As (2.14) is a product of Gaussian densities, we can easily draw b̃it from it and

then transform b̃it back to obtain bit based on (2.10).

2.3.2 Step 2: drawing Ft

Ft is drawn from its conditional distribution:

f(FT |ΘT
2 ) = f(FT |ΘT

2 )

T−1∏
t=1

f(Ft|Ft+1,Θ
T
2 ), (2.17)

where ΘT
2 = (bT , AT ,HT , C1, Y

T , XT ). Combining (2.1) and (2.2), we can

simulate the full history of Ft by following a similar drawing process as the one

in step 1.

2.3.3 Step 3: drawing At

In this step, we implement shrinkage on At, while the sparsification for At is

illustrated in step 5.

21



As preparation, we perform some equation transformations. From (2.3), we

have Atξt = H
1/2
t et. This means:

ξ1t =
√
h1te1t

a21,tξ1t + ξ2t =
√
h2te2t

a31,tξ1t + a32,tξ2t + ξ3t =
√
h3te3t (2.18)

...

an1,tξ1t + an2,tξ2t + · · ·+ ann−1,tξn−1t + ξnt =
√
hntent.

Then, for i = 2, · · · , n, we have

ξit√
hit

= − 1√
hit

ξi−1t′ait + eit, eit ∼ N(0, 1), (2.19)

where ξi−1t′ = (ξ1t/
√
hit, · · · , ξi−1t/

√
hit) and ait = (ai1,t, · · · , aii−1,t)

′. More-

over, (2.6) can be rewritten as

ait = ait−1 + uit, uit ∼ N(0, Si), (2.20)

where Si is an (i− 1)× (i− 1) diagonal matrix.

Now, we introduce an (i − 1) × 1 vector ai = (ai1, · · · , aii−1)
′ and let Sij

denote the j-th diagonal element of Si. Then, we can rewrite (2.19) and (2.20)

as

ξit√
hit

= − 1√
hit

ãit?
√
Siξ

i−1t − 1√
hit

ait?ξ
i−1t + eit, eit ∼ N(0, 1), (2.21)

ãit = ãit−1 + ũit, ũit ∼ N(0, Ii), (2.22)
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where Ii is an (i− 1)× (i− 1) identity matrix:

ãit = (ãi1,t, · · · , ãii−1,t)
′, ãij,t =

aij,t − aij√
Sij

, j = 1, · · · , i− 1, (2.23)

and ãi0 = 0.

We then collect the parameters together and define the following new nota-

tions: ψi = (
√
Si1, · · · ,

√
Sii−1, a

′
i)

′ and cit = ((−1/
√
hitãit�ξi−1t)′,−1/

√
hitξ

i−1t′)′.

The following transformation of (2.21) is used subsequently: ξit/
√
hit = ψ′

icit +

eit.

Prior For shrinking At, we use the Dirichlet–Laplace prior for ψi.

Drawing process We simulate the full history of ãit using the Dirichlet–

Laplace prior. Specifically, we define ãTi = (ãi1, · · · , ãiT ), and the conditional

probability density function of ãit can be expressed as follows:

f(ãTi |ΘT
3 ) = f(ãiT |ΘT

3 )

T−1∏
t=1

f(ãit|ãit+1,Θ
T
3 ), (2.24)

where ΘT
3 = (bT , FT ,HT , ψi,M2, Y

T , XT ) and M2 denotes the hyperparameter

in the prior of ψi. Based on (2.24), (2.21), and (2.22), we can obtain ãTi using

a drawing process similar to that used in step 1. Finally, we transform ãit back

to get ait based on (2.23).

2.3.4 Step 4: drawing Ht

We implement shrinkage in this step and sparsification in the next one on Ht.

As a preparation, we make the following equation transformations.

We define mt = Atξt; then, from Atξt = H
1/2
t et, for i = 1, · · · , n, we have
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the i-th element of mt, mit =
√
hiteit. Consequently,

log(m2
it) = log(hit) + log(e2it), e2it ∼ χ2(1),

≈ −1.27 + log(hit) + ϕit, ϕit ∼ N(0,
π2

2
). (2.25)

Next, we introduce element hi and let σ2
i denote the i-th diagonal element

of Σ. Combining (2.7) and (2.25), we have

log(m2
it) = −1.27 + log(h̃it)σi + hi + ϕit, ϕit ∼ N(0,

π2

2
), (2.26)

log(h̃it) = log(h̃it−1) + γ̃it, γ̃it ∼ N(0, 1), (2.27)

where

log(h̃it) =
log(hit)− hi√

σ2
i

, (2.28)

and log(h̃i0) = 0. Further, we have log(m2
it) + 1.27 = τ ′i lit + ϕit, where τ ′i =

(σi, hi) and lit = (log(h̃it), 1)
′.

Prior To shrink Ht, we use the Dirichlet–Laplace prior for τi.

Drawing process We simulate the full history of log(h̃it) based on the con-

ditional probability density function of log(h̃it):

f(log(h̃i)
T |ΘT

4 ) = f(log(h̃it)|ΘT
4 )

T−1∏
t=1

f(log(h̃it)|log(h̃it+1),Θ
T
4 ), (2.29)

where log(h̃i)T = (log(h̃i1), · · · , log(h̃iT )), ΘT
4 = (bT , FT , AT , τi,M3, Y

T , XT )

and M3 refers to the hyperparameter in the prior of τi. Applying (2.26), (2.27),

and (2.29), and following a similar drawing process to that in step 1, log(h̃it)

can be obtained. Finally, we transform log(h̃it) back to obtain log(hit) based

on (2.28).

24



2.3.5 Step 5: drawing αi, ψi, and τi

In this step, we first show how to draw αi, ψi, and τi from their posteriors, and

then illustrate how to sparsify them.

Posterior αi, ψi, and τi are drawn from their posteriors, which can be ob-

tained straightforwardly. Specifically,

αi|ΘT
5 ∼ N((Ω−1

i + z′iΓ
−1
i zi)

−1z′iΓ
−1
i yi, (Ω−1

i + z′iΓ
−1
i zi)

−1), (2.30)

ψi|ΘT
6 ∼ N((Ω̄−1

i + c′ici)
−1c′iȳi, (Ω̄−1

i + c′ici)
−1),

τi|ΘT
7 ∼ N((Ω̃−1

i + (
π2

2
)−1l′ili)

−1(
π2

2
)−1l′iỹi, (Ω̃−1

i + (
π2

2
)−1l′ili)

−1),

where ΘT
5 = (bT , FT ,HT , AT ,M1, Y

T , XT ), Ωi refers to the variance of the prior

of αi, Γi = diag(Γξ
1,ii, · · · ,Γ

ξ
T,ii), zi = (zi1, · · · , ziT )′, ΘT

6 = (bT , FT ,HT , AT ,M2, Y
T , XT ),

Ω̄i refers to the variance of the prior of ci, ci = (ci1, · · · , ciT )′, ȳi = ( ξi1√
hi1
, · · · , ξiT√

hiT
)′,

ΘT
7 = (bT , FT ,HT , AT ,M3, Y

T , XT ), Ω̃i refers to the variance of the prior of li,

li = (li1, · · · , liT )′, and ỹi = (log(m2
i1) + 1.27, · · · , log(m2

iT ) + 1.27)′.

Sparsification Following Huber et al. (2020) and given a draw α
(nT )
i =

(α
(nT )
i1 , · · · , α(nT )

i2ki
) from (2.30), the sparsified αi is obtained as

ᾱij = sign(α
(nT )
ij ) ‖ zi,j ‖−2 (| α(nT )

ij |‖ zi,j ‖2 −κij)+, j = 1, · · · , 2ki, (2.31)

where κij =| α(nT )
ij |−2, sign(x) returns the sign of x, zi,j denotes the j-th

column of zi, and (x)+ = max(x, 0). Note that equation (2.31) is a soft-

thresholding approach, in which the value of ᾱij below a certain value is set

to zero.

Sparsification can be conducted similarly for ψi and τi.
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2.3.6 Step 6: drawing C1

From (2.2), we have

ft = c′Ft−1 + ηt, ηt ∼ N(0, I),

where c = (c1, · · · , cp+1)
′. For the i-th row of ft,

ft,i = c′iFt−1 + ηt,i, ηt,i ∼ N(0, 1).

Note that (2.2) is a VAR. There are several types of prior distributions avail-

able that can be used for VAR models, as summarized by Kadiyala and Karlsson

(1997) and Gelman et al. (2013). Among these, we select the standard noninfor-

mative prior for c. Then, we draw ci from its conditional posterior distribution,

ci | FT ∼ N(ĉi, (F
T ′

t−1F
T
t−1)

−1),

where ĉi denotes the OLS estimate of ci.

2.3.7 Step 7: drawing M1, M2, M3

In this step, we draw hyperparameters Mi for i = 1, 2, 3. For M1, which includes

ωi, ϵi, ζi, and a in the prior of αi, we have

ωij | αij , ϵij , ζi ∼ IG(ζi
ϵij

| αij |
, 1),

ζi | αi, ϵi ∼ GIG(2ki(a− 1), 1, 2

2ki∑
j=1

| αij |
ϵij

),

ϵij =
Tij∑2ki

j=1 Tij
, Tij | αij ∼ GIG(a− 1, 1, 2 | αij |),
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where IG denotes the inverse Gaussian distribution and GIG refers to the gen-

eralized inverted Gaussian distribution (see Bhattacharya et al., 2015 and Huber

et al., 2020). Following Huber et al. 2020, we obtain the conditional posterior of

a using a Metropolis–Hastings algorithm with a Gaussian proposal distribution

truncated between (2ki)
−1 and 1/2. In the simulation and empirical application,

the variance of the proposal distribution is tuned during the first 20% of the

burn-in stage of the MCMC sampler, such that the acceptance rate is between

20% and 40%.

This is similar for M2 and M3.

2.4 Artificial simulation

Here, we present evidence on the performance of our model based on simulation

experiments using artificial data generated from the TVS-ADF.

To assess how well the different models perform across different numbers of

explained variables, numbers of explanatory variables, degrees of sparsity, and

lengths of time series, we set n = 10, 20, 30. For each n, we consider three

sparsity levels, labeled as dense (with 10% zeros in αi, ϕi, and τi), moderate

(with 50% zeros), and sparse (with 90% zeros). For each sparsity level, we

consider ki = 4 and 8 explanatory variables and sample sizes T = 50 and

200. We randomly generate N = 1000 simulated datasets for each variant. We

set xit ∼ N(0, 10Ix), p = 1 and S = 0.012IS ,Σ = 0.012IΣ, D̄ = 0.012ID̄, D̃ =

0.012ID̃, where Ix, IS , IΣ, ID̄ and ID̃ are identity matrices of dimensionsmi×mi,

[n× (n− 1)/2]× [n× (n− 1)/2], n× n, nmi × nmi and nr × nr, respectively.

Moreover, for ki = 4, we set

mi = 2, q = 1, C1 =

0.2 0.1

1 0

 .
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For ki = 8, we set

mi = 4, q = 2, C1 =



0.2 0.2 0.1 0.1

0.2 0.2 0.1 0.1

1 0 0 0

0 1 0 0


.

The initial value of Ft is set to zero. The initial value of Γξ
t , Γξ

1, is generated by

1/2(a+ a′), where a is an n×n matrix and each element of a is generated from

a normal distribution, N(0, 0.1). Each diagonal element of Γξ
1 is replaced by one

to ensure Γξ
1 is a positive definite matrix. Then, we can easily obtain the initial

values of At and Ht using the Cholesky decomposition for Γξ
1, respectively.

We use the two-step method of Forni et al. (2009) to estimate the ADF and

the MCMC algorithm described in Section 3 to estimate the TVS-ADF. We use

the first T observations to estimate the models, and then the resulting estimates

to predict the T +1-th observation. The precision of point forecasts is measured

by the following two types of mean-squared errors:

MSEi =
1

N

N∑
j=1

(yji,T+1 − ŷji,T+1)
2, i = 1, · · · , n,

MSE(n) =
1

n

n∑
i=1

MSEi,

where yji,T+1 refers to the T+1-th observation of the i-th unit (i.e., i-th explained

variable) in the j-th simulated dataset and ŷji,T+1 denotes its fitted value. MSEi

measures the predictive precision of the i-th unit, while MSE(n) measures the

forecasting accuracy of all units.

Figures 2.1 and 2.2 plot the mean-squared errors of our model and the ADF

with n = 10 for different numbers of explanatory variables, sparsity levels, and

sample sizes. The results show that, for most units, the performance of the
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Figure 2.1: MSEi of three models with 4 explanatory variables (n = 10)

TVS-ADF(s) and the TVS-ADF(ss) is always better than that of the ADF for

all combinations with different numbers of explanatory variables, sparsity lev-

els, and sample sizes. Additionally, the TVS-ADF(s) and TVS-ADF(ss) always

have similar outcomes for all settings. Moreover, for different sample sizes and

numbers of explanatory variables, the results of the ADF gradually approach

those of our models as the sparsity level increases. The reason could be that,

as the sparsity level rises, more parameters in the date-generating process will

become constants, such that the time-varying feature of the data tends to be-

come weaker, which is a favorable situation for the ADF. Similarly for n = 20

and n = 30 (see Figures A.1 – A.4 in Appendix A).

To further compare model performances, we tabulate MSE(n) for three mod-

els with different numbers of explained variables, numbers of explanatory vari-

ables, sample sizes, and sparsity levels in Table 1. We can make the following

observations.
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Figure 2.2: MSEi of three models with 8 explanatory variables (n = 10)

First, regardless of the number of explained variables and explanatory vari-

ables, as the sparsity level gradually increases, the mean-squared errors of the

three models become smaller across all sample sizes. As discussed in relation to

Figures 1 and 2, it is obvious that the time-varying characteristic tends to be-

come weaker as the sparsity level rises and more parameters become constants.

This could cause MSE(n) for the ADF to decline gradually. Additionally, for

both TVS-ADF(s) and TVS-ADF(ss), the increase in the sparsity level could

be conducive to an improvement in their performance.

Second, MSE(n) for both TVS-ADF(s) and TVS-ADF(ss) decrease as sam-

ple size T increases in some cases, whereas in other cases, MSE(n) increase. This

may be because although increasing the sample size benefits estimation accu-

racy, it also increases the number of unknown parameters; thus, an increase in

the number of unknown parameters can offset the benefit of a larger sample.

Moreover, the MSE(n) for the ADF has a similar tendency. A possible reason is
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that, in the random walk process, increasing time T can cause larger aggregate

movements in the parameters, which can offset the benefit of a larger sample.

Third, the number of explanatory variables has little positive impact on the

results. For T = 200 and 90% sparsity, MSE(n) for both TVS-ADF(s) and

TVS-ADF(ss) decrease with the number of the variables. As a matter of fact,

increasing the number of explanatory variables causes an increase in the number

of parameters, which could decrease estimation accuracy. Fourth, TVS-ADF(s)

and TVS-ADF(ss) show substantial improvements with respect to predictive

accuracy relative to the ADF in all cases, which indicates that our models

can better capture time-varying information. Moreover, the TVS-ADF(s) and

TVS-ADF(ss) yield similar outcomes in all cases, but the TVS-ADF(s) performs

slightly better than the TVS-ADF(ss) for most cases.

Overall, the TVS-ADF(s) and TVS-ADF(ss) almost always perform better

than the ADF for different numbers of explained variables, numbers of explana-

tory variables, sparsity levels, and sample sizes. Furthermore, the TVS-ADF(s)

and TVS-ADF(ss) display similar results.
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2.5 Empirical application: Macroeconomic fore-

casting

We use the FRED-MD database from McCracken and Ng (2016), which consists

of monthly US macroeconomic data. The sample period is from January 1995 to

December 2020. The dataset includes economic variables in eight groups: out-

put and income; labor market; housing; consumption, orders, and inventories;

money and credit; interest and exchange rates; prices; and stock market.

Let us consider the ordering issue of variables before the formal empirical

application. For simplicity, let us consider a two-variable example:

Γξ
t = A−1

t HtA
−1′

t =

 1

a21,t 1


h1t

h2t


1 a21,t

1

 =

 h1t a21,th1t

a21,th1t a221,th1t + h2t


=

elog(h1t−1)+γ1t a21,th1t

a21,th1t (a21,t−1 + u21,t)e
log(h1t−1)+γ1t + elog(h2t−1)+γ2t

 .

The expression above clarifies that, conditional on t− 1, the distribution of the

first diagonal element of Γξ
t is a log-normal distribution, whereas the second

diagonal element is not. Hence, different orderings will imply different distri-

butions for the variables, which could affect the model’s predictive results. In

addition, the ordering issue can also be reflected by (2.18). In this equation, ξ1t

has a contemporaneous effect on ξ2t, while ξ2t does not have a contemporaneous

effect on ξ1t. In other words, the first variable reacts to the second one with at

least one period of lag. Similarly, ξ1t and ξ2t have a contemporaneous effect on

ξ3t, but they react to ξ3t with at least one period of lag. The situation is similar

for the other variables. This characteristic gives us an important implication

that one can determine the ordering of variables according to the contemporane-
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ous relationships between different variables. For instance, in monetary policy

analysis, inflation and unemployment react to the policy instrument (e.g., in-

terest rate) with at least one period of lag. The contemporaneous relationships

between variables can be speculated based on economic theories or experiences.

Now, we start our empirical application. Specifically, we choose 21 repre-

sentative variables from different groups by selecting the highest-level indices in

each group. Then, these variables are standardized and transformed to be sta-

tionary using the transformation codes provided by McCracken and Ng (2016).

Subsequently, we use the block method of Belviso and Milani (2006) and Ko-

robilis (2013) to determine the ordering of these variables. We divide these

variables into six groups and the ordering is as follows: real activity; money,

credit, and finance; exchange rate; price; expectations; and monetary policy

(interest rate). Table A.1 (see Appendix A) details the variables. We conduct

one-step-ahead point forecasts for these variables using the ADF and TVS-ADF,

respectively.

We specify one latent factor and its first-order lags as latent variables, and

take the first-order lags of the 21 economic variables as observed explanatory

variables and two options, T = 100 and 200 as the sample sizes for the esti-

mations. We adopt the following rolling window scheme. For T = 100 as the

starting point of the rolling window, we use the first 100 observations from the

sample period, January 1995 to April 2003, to estimate the models, which are

then used to predict the outcomes for May 2003. Then, we move the rolling

window one step ahead (i.e., the sample period is from February 1995 to May

2003) and use the resulting estimates to predict the outcomes for June 2003. We

proceed recursively 100 times in this fashion and obtain a sequence of forecasts

from May 2003 to August 2011. Similarly, for T = 200, we obtain a sequence

of forecasts from October 2011 to February 2020.
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We measure the precision of the one-step-ahead point forecasts for the i-th

explained variable using the mean-squared error:

MSEi =
1

l

T+1+l∑
t=T+1

(yit − ŷit)
2, i = 1, · · · , n,

where l = 100 (i.e., 100 times) and n = 21 (i.e., 21 variables). Additionally,

we measure the predictive accuracy of all explained variables using MSE(n) =

1/n
∑n

i=1 MSEi. To measure the predictive accuracy of all explained variables

on the time dimension, we use the cumulative sum of forecasting errors:

CSE(n)
τ =

τ∑
t=T+1

SEt, τ = T + 1, · · · , T + 1 + l,

for all explained variables, where SEt = 1/n
∑n

i=1(yit − ŷit)
2.

Table 2.2 presents the MSEi and MSE(n) for the one-step-ahead point fore-

casts of the three models for different sample sizes. The deep gray figures

indicate the lowest MSEi across the three models for a given sample size, while

the light gray figures are the second lowest MSEi. The last line of the table

gives the MSE(n). The values of MSEi show that the predictive performances

of the TVS-ADF(ss) and TVS-ADF(s) are better than that of the ADF for

most economic variables, regardless of sample size, which could arise from the

capacity of our models to capture economic dynamics. The results for the TVS-

ADF(ss) and TVS-ADF(s) are similar. Moreover, the predictive accuracies of

the TVS-ADF(ss) and TVS-ADF(s) are more stable for each economic variable

relative to that of the ADF, for which there are several large values of MSEi

regardless of the sample size. The ADF without time-varying parameters can-

not capture economic dynamics better, which could be responsible for its large

mean-squared errors of some variables. Furthermore, the results of MSE(n) in-

dicate that the forecast errors of the TVS-ADF(ss) and TVS-ADF(s) decline
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with sample size, unlike those of the ADF.

Figure 2.3 presents CSE(n)
τ , the one-step-ahead point forecasts of the three

models for different sample sizes, thus illustrating the increasing path of the

predictive error. For T = 100, the TVS-ADF(s) and TVS-ADF(ss) have much

smaller increases in the predictive error relative to the ADF for most time

points, while the TVS-ADF(ss) and TVS-ADF(s) consistently beat the ADF

during the whole forecasting period for T = 200. The cumulative predictive

errors of the TVS-ADF(ss) and TVS-ADF(s) are also far smaller than those of

their competitors. Moreover, the performance of the TVS-ADF(s) is similar to

that of the TVS-ADF(ss).
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Figure 2.3: CSE(n)
τ of one-step-ahead point forecasts of three models

In sum, compared to the ADF, the TVS-ADF(s) and TVS-ADF(ss) can

better capture economic dynamic features and thus substantially improve the

predictive accuracy regardless of whether the sample size is T = 100 or 200.

Additionally, the forecasting performance of our models is more stable than the

ADF for different sample sizes. Moreover, the TVS-ADF(s) and TVS-ADF(ss)

always have similar outcomes.
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2.6 Conclusions

This study proposed a new model, TVS-ADF, to help capture the time-varying

characteristics of economic data. We also constructed an effective MCMC algo-

rithm (seven-step Gibbs sampling) to estimate this model. Moreover, to avoid

overparameterization, we offered shrinkage and sparsification methods for our

model in two ways: (i) only shrink the model and (ii) both shrink and sparsify

the model.

Using an artificial data experiment, we showed that the TVS-ADF(s) and

TVS-ADF(ss) always yield more precise forecasts than the competing ADF

for different numbers of explained variables, numbers of explanatory variables,

sparsity levels, and sample sizes. Moreover, our proposed models have higher

predictive accuracy as the sparsity level or sample size increases. An empirical

application to macroeconomic forecasting indicated that our model also captures

the dynamic features of a real economic system better than its competitor. We

will attempt to address the issue of the determination of the number of factors

in our future research.
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Chapter 3

Tying Maximum Likelihood Estimation

with Selection of Tuning Parameter for

Dependent Data

3.1 Introduction

In empirical applications, we usually face a type of irregular dependent data

problem that most of the time series in a data set have long sample periods,

while the others only have very short sample periods due to some reasons (e.g.,

different listing time of stocks, emerging indices, and severe data missing). This

problem makes it very hard to get a reliable estimation result. For example, if we

endeavor to use a vector auto-regression model to analyze the data of two stocks

with different lengths where the data length of one stock is 500, while the other

one only has 10 observations, there is no doubt that the maximum likelihood

estimation using only the data of the short time series (i.e., 10 observations)

hardly gives us good point estimates.

There are some studies that focus on small sample data and unequal-length

time series. For instance, Hoyle (1999) summarized some statistical strategies
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for analyzing data from small samples, but these methods are mainly appropri-

ate for independent identically distributed small-sample data with equal lengths.

Baltagi and Song (2006) provided a survey for the treatment of unbalanced panel

data, but these treatments rely on an error component regression model, which

means that the application range of these methods is greatly limited; in addi-

tion, these methods are mainly used for data with large sample sizes. Van de

Schoot and Miocević (2020) provided guidelines and tools for implementing so-

lutions to issues that arise in small-sample research, but these methods mainly

focus on small-sample data with equal lengths. It is obvious that these studies

can not directly provide an effective solution for the aforementioned problem.

Although the two-stage quasi-maximum likelihood estimation (2SQMLE, see

White, 1996) could be a solution, it has at least two significant limitations: (1)

it can not ensure the estimation consistency of parameters of two stocks, for

example, if one uses the 2SQMLE to estimate a VAR(1) model where the coeffi-

cients matrix of the lag one is non-diagonal; (2) the estimation for the short time

series in the second-stage estimation may not be obtained because the degrees

of freedom are not enough. As an alternative, the method provided by Lynch

and Wachter (2013) may be able to deal with our irregular data problem. This

method is based on the generalized method of moments (GMM), and is close to

our newly proposed tying maximum likelihood estimation (TMLE, introduced

later) without tying.

Recently, the parameter tying technique (see Yan et al., 2015; Goodfellow

et al., 2016; Luo et al., 2017) has enjoyed popularity in Few-shot Learning

(see Wang et al., 2020) that plays an important role in tackling small sample

data in machine learning (see Zhou, 2021). The main idea of the parameter

tying method is to transfer some useful information from other relevant but

different data to the target data that only have a few observations. We apply
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the idea of the parameter tying to the maximum likelihood estimation to solve

the aforementioned irregular data problem.

For this motivation, we propose the TMLE by tying some parameters of the

long time series with the corresponding parameters of the short time series. The

form of tying depends on the form of a penalty term added in the traditional

likelihood function. The strength of tying depends on a tuning parameter λ.

We provide a selection method of λ based on a bootstrap procedure to improve

the estimation performance effectively.

The contributions of this study are fourfold. First, adopting the idea of

the parameter tying, we propose the TMLE, which is a pioneering work in this

direction. The idea of the parameter tying, to the best of our knowledge, has

never appeared in econometrics literature. Moreover, the TMLE can be widely

applied in various fields, such as economics and finance, as it can be used directly

as long as the likelihood functions of econometric or statistical models exist.

Second, we derived the asymptotic properties of the TMLE. Under some

regularity conditions, the asymptotic theories show the convergence rate of the

estimator and also the asymptotic normality with λ = o(1/
√
T ).

Third, we derived the finite-sample risk bound of the proposed estimator.

The theory shows that the risk bound depends on the tuning parameter, the

form of tying, and some other parameters, such as the sample sizes of the long

and short time series. In addition, this theory also provides evidence on the

advantage of the TMLE relative to the traditional MLE.

Fourth, to reduce the risk of estimation, we propose a bootstrap procedure to

select the tuning parameter that determines the strength of tying. Furthermore,

we also provided the finite-sample theory of this bootstrap procedure, which

shows how one should carry out this procedure effectively in practice.

The rest of the paper is organized as follows. Section 2 describes the TMLE
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in detail. Section 3 provides the asymptotic properties of the TMLE. Section 4

shows the risk bound of the TMLE. Section 5 describes the bootstrap procedure

and provides the finite-sample theory for it. In sections 6 and 7, we carry

out extensive artificial simulations and empirical applications to investigate the

finite sample performance of the TMLE. All technical proofs and additional

results of the artificial simulations and empirical applications are provided in

Appendix B.

3.2 Tying Maximum Likelihood Estimator

3.2.1 Irregular Data Sets

Let us denote the n-dimensional time series by rt = (r1t, · · · , rnt)′. In this

paper, we allow for the situation that the sample period of a part of the n-

dimensional time series is different from that of other entries of rt. This study

considers two sets of time series, where the sample period of one set is different

from that of the other. Extension of the results to multiple sets of time series

with different sample periods may be possible without any further difficulties.

To be more specific, let us consider two bundles I1 ⊂ I ≡ {1, 2, . . . , n} and

I2 ⊂ I. Data for time series that belong to I1 are available for t = 1, . . . , τ ,

while that in I2 are available for t = τ + 1, . . . , T . I1 and I2 are allowed to

have non-empty intersection, I1 ∪ I2 = I, and each bundle is allowed not to be

a subset of the other bundle. The cardinality of I1 and I2 are denoted as n1

and n2, respectively. The time series that belong to the bundle Ij is denoted as

rIj ,t for j = 1, 2. Recall that data available for rI1,t and rI2,t are t = 1, . . . , τ

and t = τ + 1. . . . , T , respectively.

We consider the scenario that the observation for rI2,t is short in the sense

that a constant a exists such that (T − τ) = T a with 0 < a ≤ 1, while τ is
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assumed to grow in the same order with T . Figure 3.1 illustrates a simple

example of data availability.

Time
t = 1 t = Tt = τ

r1,t

r2,t

r3,t

T a

Figure 3.1: An example of data availability. In this example, rt is a 3-
dimensional time series (n = 3) with I1 = {1, 2}, I2 = {1, 3}, rI1,t = (r1,t, r2,t)

′,
rI2,t = (r1,t, r3,t)

′, n1 = 2, and n2 = 2.

3.2.2 Quasi-Likelihood Function

Letting Ft−1 be the sigma field generated by the past values of rt, we denote

the density functions of rI1,t and rI2,t conditional on Ft−1 by f1,t (θI1) and

f2,t (θI2), respectively, where θI1 and θI2 are K1- and K2-dimensional parameter

vectors. Since I1 and I2 are allowed to have a non-empty intersection, θI1 and

θI2 may have common parameters. Let θ̌ ≡ θI2 \θI1 6= ∅ and a parameter vector

θ = (θ′I1 , θ̌
′)′ be K-dimensional.

The conditional log quasi-likelihood function is,

QT (θ) =
1

T

τ∑
t=1

lI1,t(θI1) +
1

T

T∑
t=τ+1

lI2,t(θI2), (3.1)

where lI1,t(θI1) = − log f1,t(θI1) and lI2,t(θI2) = − log f2,t(θI2).

When θI1 and θI2 have no common elements, the minimizer of QT (θ) is

the standard maximum likelihood estimator (MLE) of parametric multivariate

density models involving variables with histories of different lengths. When

θI1 and θI2 have some common elements and the parameter of interest is θI2
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rather than θI1 , the minimizer of the second term is the familiar one-stage MLE

(1SMLE) using only the overlapping data.

Another approach to estimate parameters is to employ two-stage quasi-

maximum likelihood estimator (2SQMLE) (see White, 1996), when the mul-

tivariate model can be partitioned into elements relating only to the marginal

distributions and elements only relating to the copula (see Patton, 2006 for

2SQMLE with time series of possibly different lengths). For all estimators men-

tioned above, precise estimation, especially for θ̌, is unpromising, when the data

available for the bundle I2 is very short.

3.2.3 Tying Maximum Likelihood Estimator

Since the amount of data available for rI2,t is short relative to that for rI1,t,

less information are available for the estimation of θ̌ compared to that of θI1 .

To improve the finite sample performance for the estimation of θ̌, we propose a

novel estimation method that is inspired by the parameter tying technique (see

Yan et al., 2015; Goodfellow et al., 2016; Luo et al., 2017) in Few-shot Learning

(see Zhou, 2021). The proposed estimator transfers the information available

for the estimation of θI1 to that of θ̌ by imposing a penalty term on QT (θ).

The penalized log-likelihood function is,

Qλ(θ) = QT (θ) + λ ‖W ′θ‖2

=
1

T

τ∑
t=1

lI1,t(θI1) +
1

T

T∑
t=τ+1

lI2,t(θI2) + λ ‖Wθ‖2 , (3.2)

where λ ≥ 0 is a tuning parameter that determines the scale of the penalty, W

is a m×K restriction matrix that reflects prior information on the relationship

among parameters, and ‖ · ‖ denotes the Euclidean norm.

The restriction matrix W consists of finite real numbers that are determined
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by researchers to introduce m restrictions on parameters. For example, to tie

the first and the second element of θ, W will be the K-dimensional row vector

such as (1,−1, 0, · · · , 0). Then the penalty term becomes λ|θ1 − θ2|2, where θ1

and θ2 denotes, for now, the first and second element of θ. It may be possible

to consider a tuning parameter, say λm. In this case, the penalty term becomes∑m
l=1 λl|Wlθ|, where the Wl is K-dimensional row restriction vector. For sim-

plicity, however, this study focus on the single tuning parameter described in

equation (3.2).

The tying maximum likelihood estimator (TMLE) is defined by

θ̂ = argmin
θ∈Θ

Qλ(θ), (3.3)

where Θ = ΘI1 × Θ̌ ⊂ RK is the parameter space of θ = (θ′I1 , θ̌
′)′. Similarly,

the parameter space of θI2 is denoted as ΘI2 . We denote the TMLEs of θI1 , θI2 ,

and θ̌ by θ̂I1 , θ̂I2 , and ˆ̌θ, respectively.

The TMLE is an estimator of the pseudo-true parameter vector

θ0 = argmin
θ∈Θ

Qp(θ), (3.4)

where

Qp(θ) =
1

T

τ∑
t=1

E[lI1,t(θI1)] +
1

T

T∑
t=τ+1

E[lI2,t(θI2)] (3.5)

is the population version of QT (θ). The pseudo-true values of θ̂I1 , θ̂I2 , and ˆ̌θ

are denoted as θI1,0, θI2,0, and θ̌0, respectively.

3.2.4 Notations

In order to show the theoretical results below, let us introduce some notations.

For any function g, let ∇·g and ∇··g denote the partial derivative and the second
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derivative of g with respect to ·, respectively. We denote ∇xg(x̃) = ∇xg(x)|x=x̃.

For any integer p, 0p denotes p-dimensional column zero vector. The Lp-norm

and supremum norm are denoted as ‖ · ‖p and ‖ · ‖∞, respectively. For any

matrix A, ‖A‖ denotes the Frobenius norm. Let C denote a universal constant,

which may vary at each occurrence. For any symmetric matrix A, ιmin(A) and

ιmax(A) denote the smallest and largest eigenvalue of A, respectively. For any

positive integer a, let Ia denote the a× a identity matrix. Similarly, let 0ab and

0a denote the a× b zero matrix and a-dimensional zero vector, respectively. We

define the K ×K matrix IH such that

IH =

 IK1 0K1(K−K1)

0(K−K1)K1
T 1−aIK−K1

 . (3.6)

Let U1,t(θ) be the K1-dimensional vector such that U1,t(θ) = ∇θI1
lI1,t(θI1)

for t = 1, · · · , τ and U1,t(θ) = ∇θI1
lI2,t(θI2) for t = τ + 1, · · · , T . Let U2,t(θ) =

∇θ̌lI2,t(θI2) be a (K −K1)-dimensional vector for t = τ + 1, · · · , T .

Then, we define Σ = limT→∞
1
T

∑T
t=1

∑T
s=1E [Ut(θ0)Us(θ0)

′], where Ut(θ0)

is the K-dimensional vector such that Ut(θ0) = (U1,t(θ0)
′, 0′K−K1

)′ for t =

1, · · · , τ and Ut(θ0) = (U1,t(θ0)
′,
√
T/

√
TsU2,t(θ0)

′)′, where Ts ≡ T − τ , for

t = τ + 1, · · · , T 1.
1Let

Σ1 = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E
[
U1,t(θ0)U1,s(θ0)

′] ,
Σ2 = lim

T→∞

1

Ta

T∑
t=τ+1

T∑
s=τ+1

E
[
U2,t(θ0)U2,s(θ0)

′] ,
Σ12 = lim

T→∞

1
√
T
√
Ts

T∑
t=1

T∑
s=τ+1

E
[
U1,t(θ0)U2,s(θ0)

′] ,
Σ21 = lim

T→∞

1
√
T
√
Ts

T∑
t=1

T∑
s=τ+1

E
[
U2,t(θ0)U1,s(θ0)

′] . (3.7)

Then, Σ is the K ×K matrix
Σ =

(
Σ1 Σ12

Σ21 Σ2

)
. (3.8)
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Let ∇θQp(θ) ≡ 1
T

∑τ
t=1E[∇θlI1,t(θI1)]+

1
T

∑T
t=τ+1E[∇θlI2,t(θI2)] and ∇θθ′QP (θ) ≡

1
T

∑τ
t=1E[∇θθ′ lI1,t(θI1)] +

1
T

∑T
t=τ+1E[∇θθ′ lI2,t(θI2)].

3.3 Asymptotic Properties

We make the following assumptions.

Assumption 1 (Data). For all θ ∈ Θ, lI1,t(θI1) and lI2,t(θI2) are Ft-measurable.

The process {rs}ts=1 is a stationary strong mixing with mixing coefficients α(·),

where α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1.

Assumption 2 (Parameter). The parameter spaces Θ, ΘI1 , and ΘI2 are com-

pact and convex subset of RK , RK1 , and RK2 , respectively. The true value θ0

defined in equation (3.4) is unique and lies in the interior of Θ and satisfies

∇θQp(θ0) = 0K .

Assumption 3 (Model). (1) QT (θ) is two-times continuously differentiable

with respect to θ.

(2) There exists a measurable function lt such that, for all j = 1, 2 and

k, k′ = 0, 1, · · · ,K, |∇θkθk′ lIj ,t(θIj ) − ∇θkθk′ lIj ,t(θ̄Ij )| < ‖θIj − θ̄Ij‖lt for

any θIj , θ̄Ij ∈ ΘIj , supθIj∈ΘIj
|∇θkθk′ lIj ,t(θIj )| ≤ lt and E(|lt|q) < cl for

some constant cl <∞ and some q > max{K1 + 1, 4,K2 + a}.

(3) ∇θθ′QP (θ0) exists and ιmin(IH∇θθ′QP (θ0)) ≥ cH for a constant cH > 0.

(4) There exists H ≡ limT→∞[IH∇θθ′QP (θ0)] and H > 0.

(5) There exists Σ and Σ > 0.

Under Assumption 1, the density functions lI1,t(θI1) and lI2,t(θI2) are sta-

tionary strong mixing (e.g. Theorem 14.1 of Davidson (1994)). Note that, under
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Assumptions 1, 2, and 3, the first and second derivatives of the log-likelihood

functions are also stationary strong mixing processes because each of them is a

measurable function of a stationary strong mixing process. As a matter of fact,

many classical econometric models satisfy this assumption, such as the VAR

model (see Yin, 2019), the GARCH BEKK model (see Comte and Lieberman,

2003), and the VEC model (see Hafner and Preminger, 2009).

Most of Assumptions 2 and 3 are standard assumptions for consistency and

asymptotic normality of MLEs (e.g, Hayashi, 2000) adjusted for the models

for dependent processes with different lengths. Assumption 3 (2) is about the

smoothness and moment conditions on the objective function, which is com-

monly assumed for penalized estimator (see Su et al., 2016).

The population variant of the likelihood function defined in the equation

(3.5) implies that the second term relating to the process rI2,t is asymptotically

negligible. To make the asymptotic properties of estimates relating only to the

process rI2,t non-negligible, the matrix IH is introduced. Using the matrix, we

are able to consider asymptotic properties of TMLE that reveal the consequences

of having shorter sampling periods for rI2,t. This is reflected in Assumptions 3

(3) and (4), in which the Hessian is multiplied by IH .

Lemma 1. (Consistency) Suppose that Assumptions 1, 2, and 3 hold. For

any δ, P (‖θ̂ − θ0‖ > δ) = o(T−1), when λ→ 0 as T → ∞.

Next, we consider the convergence rate of the estimator.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Then,

θ̂ − θ0 = Op(T
1− 3

2a) +Op(T
1−aλ).

The TMLE θ̂ has no asymptotic normality as long as the value of a that

represents the sampling periods for rI2,t, that is, (T − τ) = T a is not equal to 1.
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This is because both the estimator and true value for θ̌ vanishes with T → ∞

for a 6= 1, which are implied by the likelihood functions (3.1) and (3.5).

For the asymptotic normality, let a = 1. This setting does not mean that

the difference in data lengths is asymptotically negligible. Letting Ts ≡ T − τ ,

we consider the case that Ts/T → ζ for some 0 < ζ ≤ 1. As shown below,

the difference of data lengths matters as long as ζ 6= 1 (see Patton, 2006 for

asymptotic normality of 2SMLE with time series of different lengths).

Theorem 3. Suppose that Assumptions 1, 2, and 3 hold. When λ = o(T− 1
2 ),

Σ−1/2HWT (θ̂ − θ0)
d−→ N(0, IK),

where WT is the K ×K diagonal matrix whose first K1 diagonal elements are

T 1/2 and the remaining K −K1 diagonal elements are T 1/2
s .

Following White (1996) (p.91), we say that C∗ is the asymptotic covariance

matrix of θ̂, when (C∗)−1/2
√
T (θ̂−θ0)

d−→ N(0, I), which is denoted as avar(θ̂) =

C∗. For the TMLE, we have Σ−1/2HW
√
T (θ̂ − θ0)

d−→ N(0, I), where W is the

limit of WT /
√
T , that is,

WT /
√
T =

 IK1
0K1(K−K1)

0(K−K1)K1
(Ts/T )

1/2IK−K1


→

 IK1 0K1(K−K1)

0(K−K1)K1
ζ1/2IK−K1

 = W. (3.9)

Thus, asymptotic covariance matrix of the TMLE is,

avar(θ̂) = (W−1)′(H−1)′ΣH−1W−1. (3.10)
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3.4 Risk Bound

This section shows the non-asymptotic property of the TMLE. The TMLE may

be expressed as

θ̂ = argmin
θ∈Θ

{
QT (θ) + λ ‖Wθ‖2

}
= argmin

θ∈Θ

{
QT (θ)−Qp(θ0) + λ(‖Wθ‖2 − ‖Wθ0‖2)

}
, (3.11)

implying that the aim of the TMLE is to have the population version of the loss

evaluated by itself, that is,

Qp(θ̂)−Qp(θ0) + λ‖Wθ̂‖2 − λ‖Wθ0‖2 (3.12)

to be minimized. An upper bound of equation (3.12) that holds probability

close to one is called risk bound, which reveals the non-asymptotic property of

the estimator.

To do this, let us consider the parameter spaces Θδ ≡ {θ ∈ Θ : ‖W ′W (θ −

θ0)‖ ≤ δ} and Θ̃δ ≡ {θI1 ∈ ΘI1 : θ = (θ′I1 , θ̌
′)′ ∈ Θδ}. Lemma 4 shows the

parameter spaces to which the TMLE θ̂ belongs.

Lemma 4. Let the estimator θ̂ = (θ̂′I1 ,
ˆ̌θ′)′ ∈ Θ of θ defined in equation (3.3)

exists. Under Assumptions 1, 2, and 3, θ̂I1 ∈ Θ̃δλ and θ̂ ∈ Θδλ with probability

1 − ϵS for arbitrary small ϵS > 0 and any T ≥ 2, where δλ ≡ S
2λ + ‖W ′Wθ0‖

for some constant S.

Remark 5. Lemma 4 shows that the penalized estimator θ̂ defined in equation

(3.3) belongs to the restricted parameter space Θδλ , which is a subset of the

entire parameter space Θ. Intuitively, this occurs because the parameters are

tied in their estimation, which is reflected through some interesting features
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of the restricted parameter space Θδλ . First, the restrictions are set on the

norm of W ′W (θ − θ0), which depends on the weight W , rather than the norm

of θ − θ0 itself. This comes from the construction of the objective function in

equation (3.3), in which parameters are tied with the weight. It indicates that

the restriction is imposed only on parameters that are penalized with non-zero

weights. Second, the complexity of the penalized parameter space depends on

the tuning parameter λ. Furthermore, δλ is a decreasing function of λ, which

can be close to zero when parameters are tied correctly, that is, Wθ0 = 0.

A larger value of λ indicates that the estimator belongs to a more restricted

parameter space, which can be a strict subset of the entire parameter space Θ.

As shown in the proof of Lemma 4, S that appears in δλ is a positive constant

such that P (‖∇θQT (θ̂)‖ > S) ≤ ϵS holds for any T ≥ 2 and ϵS that can be

arbitrarily small by taking S large. The size of S that makes ϵS small depends

on the dependence of the observed processes, size of the parameter space ΘI1

and ΘI2 , existence of the moments of ∇θQT (θ), and smoothness of the likelihood

function QT (θ) with respect to the parameter.

Adding the penalty to objective functions introduces a finite sample bias in

the estimator. In contrast to this, the penalty restricts the parameter space to

which the estimator belongs, as shown in Lemma 4. This trade-off makes room

for an improvement of the finite-sample performance of the penalized estimator.

The non-asymptotic property of the TMLE in terms of the risk bound is shown

in the following theorem.

Theorem 6. Suppose Assumptions 1, 2, and 3. In addition, we assume

that conditional densities of rI1,t and rI2,t are bounded from above and away

from 0 so that a constant l exists such that |lIj ,t(·)| < l for j = 1, 2. For

a fixed λ > 0, any c > 0 and arbitrary small ϵS > 0, and all τ, T a ≥
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max{− log ρ/8, 27(− log ρ)−1, 2}, the probability that

λ‖Wθ̂‖2 +Qp(θ̂)−Qp(θ0) ≤ λ‖Wθ0‖2 +
(
τ3/4

T
+
T 3a/4

T

)
κ

√
cρ̃K̄cl

+

(
τ1/2

T
+
T

a
2

T

)
2cρ̃(l + cl)

3
(3.13)

is not less than 1 − 4(1 + 4e−2cα)e
−c − 4ϵS, where κ ≡ supθ∈Θδλ

‖θ − θ0‖,

ρ̃ ≡ (−83/ log ρ)1/2, and K̄ ≡ max{K1,K2}.

Theorem 6 shows the non-asymptotic property of the penalized estimator θ̂.

The results implies that, for a fixed λ > 0 and all τ, T a ≥ max{− log ρ/8, 27(− log ρ)−1},

the probability that

Qp(θ̂)−Qp(θ0) ≤ BT (λ) + VT (λ), (3.14)

can be arbitrary close to one by taking c large and ϵS small, where

BT (λ) ≡ λ‖Wθ0‖2, (3.15)

and

VT (λ) ≡
(
τ3/4

T
+
T 3a/4

T

)
κ

√
cρ̃K̄cl +

(
τ1/2

T
+
T

a
2

T

)
2cρ̃(l + cl)

3
. (3.16)

The size of VT (λ) relates to the number of parameters through K̄ ≡ max{K1,K2},

the dependence of the sequence through ρ̃ ≡ (−83/ log ρ)1/2 in Assumption 1,

and the existence of moments through cl in Assumption 3 (2). Moreover, the

size of VT (λ) relates to the size of the restricted parameter space Θδλ through

κ = supθ∈Θδλ
‖θ − θ0‖. Thus, via S in δλ, the size of VT (λ) also relates to the

smoothness as well as boundedness of the density functions of rI1,t and rI2,t.

For λ = 0, that is, standard MLEs, Theorem B.1 shows that the right-hand
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side of the equation (3.14) turns out to be

VT (0) ≡
(
τ3/4

T
+
T 3a/4

T

)
κ̄

√
cρ̃K̄cl +

(
τ1/2

T
+
T

a
2

T

)
2cρ̃(l + cl)

3
, (3.17)

where κ̄ ≡ supθ∈Θ ‖θ − θ0‖ measures the size of the entire parameter space Θ.

Comparing the upper bound for the TMLEs in (3.14) and that for standard

MLEs in (3.17) reveals potential finite-sample advantages of TMLEs. When

parameters are tied correctly, that is, Wθ0 = 0, we have BT (λ) = 0. Moreover,

VT (λ) ≤ VT (0) for any λ because κ ≤ κ̄ by the restricted parameter spaces.

When parameters are not tied correctly, that is, Wθ0 6= 0, Λ ≡ {λ : BT (λ) +

VT (λ) < VT (0)} may be non-empty, especially when the densities of rI1 and rI2
are smooth so that κ is small relative to κ̄.

It also reveals that for a fixed T , the finite-sample advantages of TMLEs

over the standard MLEs can be large when T − τ is small. As discussed above,

the advantages of TMLEs over the standard MLEs come from the restricted

parameter space that makes the first term of VT (λ) smaller than that of VT (0)

through κ ≤ κ̄. Note that the second term in VT (λ) and VT (0) are the same.

Moreover, for τ > T/2 with a fixed T , (τ3/4 + T 3a/4)/(τ1/2 + T a/2) increases

with τ . Thus, the relative size between κ and κ̄ become more important for

larger τ , i.e., smaller T − τ .

Let us consider the value of λ that is optimal in the sense that it minimizes

BT (λ)+VT (λ). The following remark considers the optimal value of λ, denoted

as λ∗, to investigate the convergence rate of the optimal tuning parameter.

Remark 7. For simplicity, we consider the case that W is an identity matrix. In

this case, we can obtain the upper bound of the inequality that is the same with

those in (3.14) except that κ in VT (λ) is replaced with δλ.2 Then, the optimal
2We obtain the same convergence rate of the optimal tuning parameter for any W by

considering an oracle inequality that may be less sharp than that in (3.14) (see, Theorem
B.2). The upper bound of the inequality is the same as those in (3.14) except that κ in VT (λ)
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tuning parameter that minimizes the upper bound of the oracle inequality is

λ∗ = argmin
λ>0

{BT (λ) + VT (λ)} =
(S
√
cρ̃K̄cl)

1/2

‖Wθ0‖

(
τ3/4

T
+
T 3a/4

T

)1/2

, (3.18)

implying that λ∗ = O(T− 1
8 ). By replacing λ in the right hand side of equation

(3.14) with λ∗, we can show that a constant C̄ that is independent of T exists,

such that,

P
(
Qp(θ̂)−Qp(θ0) ≤ C̄T− 1

8

)
≥ 1− 4(1 + 4e−2cα)e

−c − 4ϵS . (3.19)

Following the definition in Hearst et al. (1998), the rate of T− 1
8 in equation (3.19)

is called the learning rate because it tells how well the method has learned (in

terms of the Kullback-Leibler information criterion) from the given data of fixed

length T . Equation (3.17) implies that the learning rate of the standard MLE

is T− 1
4 .

3.5 Selection of λ based on bootstrap

If the restriction matrix W set by users is absolutely correct, they can take λ

large sufficiently to estimate parameters and this choice is reasonable according

to Lemma 4 and Theorem 6. But it will become very hard for users to select

an apt λ in practice if the restriction matrix is not completely right because, in

this case, the performance of the TMLE for different λ is not always better than

that of the MLE according to Theorem 6. Hence, it is necessary to provide a

feasible and effective method to help users select a suitable λ to reduce the risk

when they are not sure whether the restriction matrix W is completely correct.

In this study, we provide an effective bootstrap procedure to address this is-

sue. Before we formally describe this bootstrap procedure, we need to introduce
is replaced by δλ + ωκ, where ω ≡ ∥Ik −W ′W∥ is zero when W is an identity matrix.
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some new notations and concepts. Specifically, we rewrite QT (θ) as QT (θ,XT ),

where XT = (r1, · · · , rT ) belonging to XT ⊂ Rn×T is a random variable that

indicates the collection of sample data. Then we regrad QT (θ,XT ) as the loss

function; in addition, we consider QT (θ,XT ) to be the true or a misspecified

log-likelihood function. Let Po denote the true distribution of data generating

process. Theoretically (ideally), one seeks an optimal θ0 ∈ Θ that minimizes

the expected loss function QPo (θ), that is,

θ0 = argmin
θ∈Θ

QPo
(θ) = argmin

θ∈Θ

∫
QT (θ, xT )dPo,

where the variable of integration is xT .

As for the TMLE, since we consider the penalty term λ ‖Wθ‖2, the estimate

of θ depends on λ for a given W . Note that here we assume that W is given

(it can be correct or not) and our target is to select an apt λ. We rewrite λ as

λT , which is intended to reflect that one can set different λ for different sample

sizes T , and suppose that λT ∈ [0, c] with c ≥ 0. In addition, we also consider

λT in a discrete set

ΛT =

{
0,

c

K(T )
,

2c

K(T )
, · · · , [K(T )− 1]c

K(T )
, c

}
,

where K(T ) is positive real number. For a given λT and a sample data, one

can obtain the point estimate of θ, which is denoted by θ̂λT
; this means that for

K(T ) different λT , one can have K(T ) estimation values of θ. Then, to evaluate

which λT is better, we can use new datasets to test. For example, there are two

different λT : λT,1 and λT,2, then we can have two estimates of θ: θ̂λT,1
and

θ̂λT,2
. Next we calculate the values of QT (θ̂λT,1

, x∗T ) and QT (θ̂λT,2
, x∗T ) where

x∗T denotes additional new data. Then we select the λT corresponding to a

smaller one of these two values. Formally, for any given λT (which means that
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θ̂λT
∈ Θ is given), one selects optimal λ̌T ∈ ΛT and λ̃T ∈ [0, c] that minimize

the expected loss function QPo
(λT ), that is,

QPo
(λT ) =

∫
QT (θ̂λT

, xT )dPo,

λ̌T = argmin
λT∈ΛT

QPo(λT ),

λ̃T = argmin
λT∈[0,c]

QPo
(λT ),

where the variable of integration is only xT , while θ̂λT
is fixed (given). However,

generally speaking, Po is unknown, which means that one can not calculate the

expected loss function above. Hence, we provide a bootstrap procedure as an

alternative.

Bootstrap procedure Suppose that the model used by users for r1, · · · , rT

can be written as

rt = m (rt−1, · · · , rt−p) + εt, εt ∼ D,

where m(·) denotes a parametric function and εt means the error term following

a distribution D. Giving a value of λT , we can obtain an estimate θ̂λT
. Then

based on the estimate θ̂λT
, we can generate a new sequence, Xb

T = (rb1, · · · , rbT ) ∈

X b
T ⊂ Rn×T , using

rbt = m̂ (rt−1, · · · , rt−p) + εbt , ε
b
t ∼ D̂,

where m̂ (rt−1, · · · , rt−p) denotes the fitted value of rt and D̂ means the dis-

tribution D with the estimates of its parameters. We call Xb
T as a bootstrap

sequence. Then we generate B bootstrap sequences in this fashion. Note that

one also can use other bootstrap schemes (e.g., the fixed-design wild bootstrap
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proposed by Gonçalves and Kilian (2004)) to generate B bootstrap sequences.

These bootstrap sequences are i.i.d. with a certain but unknown distribu-

tion, which is denoted by P b
T (λT ). Then one selects an optimal λ̂T ∈ ΛT that

minimizes the bootstrap expected loss function QP b
T
(λT ), that is,

QP b
T
(λT ) =

∫
QT (θ̂λT

, xT )dP
b
T (λT ),

λ̂T = argmin
λT∈ΛT

QP b
T
(λT ),

where the variable of integration is only xT . Since P b
T (λT ) is unknown, we

use the empirical distribution of B bootstrap sequences, which is denoted by

PB
T (λT ). Then the bootstrap average loss function is defined as

QPB
T
(λT ) =

∫
QT (θ̂λT

, xT )dP
B
T (λT )

=
1

B

B∑
i=1

QT (θ̂λT
, Xb

T,i),

where Xb
T,i refers to i-th bootstrap sequence, and its minimizer is denoted by

λ̄T = argmin
λT∈ΛT

QPB
T
(λT ). (3.20)

Now, we can use (3.20) to select an apt λT in practice.

This is the bootstrap procedure for the TMLE and we call this bootstrap

procedure TMLE bootstrap. Next, we will present some interesting theorems

about the TMLE bootstrap. It is worth mentioning that some of these theorems

are also applicable to other bootstrap schemes that can generate B bootstrap

sequences.

Theorems for bootstrap To show the finite-sample theorem for the TMLE

bootstarp, we need the definition of Generalized entropy with bracketing. Con-
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sider a probability triple (Ω,F , P ), and sub-sigma algebras F0 ⊂ F1 ⊂ · · · ⊂

FT ⊂ · · · ⊂ F . Let Zt = Zt(λ) be Ft-measurable random variables, t =

1, · · · , T, · · · , depending on a parameter λ ∈ Λ. Let M be a real positive con-

stant. Define

ρM (Zt) = 2M2E
(
e|Zt|/M − 1− |Zt|/M

∣∣Ft−1

)
, t = 1, · · · , T,

and for Z(λ) = (Z1, · · · , ZT ), write ρ̄2M (Z(λ)) = 1
T

∑T
t=1 ρM (Zt).

Definition 8. Generalized entropy with bracketing (refer to Definition

8.1 of Geer et al. (2000)): for 0 < δ < ∞, let
{
[ZL

j , Z
U
j ]
}N
j=1

be a collection of

pairs of random vectors ZL
j = (ZL

1,j , · · · , ZL
T,j) and ZU

j = (ZU
1,j , · · · , ZU

T,j), with

[ZL
t,j , Z

U
t,j ] Ft-measurable, t = 1, · · · , T , j = 1, · · · ,N , such that for all λ ∈ Λ,

there is a j = j(λ) ∈ {1, · · · ,N}, with λ 7→ j(λ) non-random, such that

(i) ρ̄2M (ZU
j − ZL

j ) ≤ δ2 on Ω,

(ii)ZL
t,j ≤ Zt ≤ ZU

t,j , t = 1, · · · , T , on Ω.

Let NZ(λ),M (δ,Ω) be the smallest non-random value of N for which such

a collection
{
[ZL

j , Z
U
j ]
}N
j=1

exists. Then HZ(λ),M (δ,Ω) = logNZ(λ),M (δ,Ω) is

called the generalized δ-entropy with bracketing.

Let LI1(λT ) =
{
lI1,1(θ̂I1,λT

), · · · , lI1,τ (θ̂I1,λT
)
}

and LI2(λT ) =
{
lI2,τ+1(θ̂I2,λT

), · · · , lI2,T (θ̂I2,λT
)
}

.

Applying Definition 8, we denote the generalized entropy with bracketing of

LIi (λT ) by HLIi
(λT ),M (δ,Ωi), where Ωi denotes the sample space satisfying

lIi,t(θ̂Ii,λT
) w.r.t.XT : Ωi → Ri ⊂ R, for i = 1, 2.

Theorem 9. Suppose that for a given restriction matrix W and λT ∈ [0, c], rt

has conditional log density function lIi,t(θ̂Ii,λT
) for i = 1, 2 such that

sup
θ̂λT

∈Θ, Xb
T∈X b

T

∣∣∣QT (θ̂λT
, Xb

T )−QP b
T
(λT )

∣∣∣ ≤ C2 <∞ a.s.,
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sup
θ̂Ii,λT

∈ΘIi
, X

(·)
T

∣∣∣lIi,t(θ̂Ii,λT
)
∣∣∣ ≤M <∞,

where X(·)
T ∈ {XT , X

b
T }, XT ∈ XT , and Xb

T ∈ X b
T . Suppose that the real-valued

function QPo
(λT ) is Lipschitz continuous. If HLIi

(λT ),M (δ,Ω
(·)
i ) exists, where

Ω
(·)
i ∈ {Ωi,Ω

b
i} and Ωb

i denotes the sample space satisfying lIi,t(θ̂Ii,λT
) w.r.t.Xb

T :

Ωb
i → Rb

i ⊂ R, for i = 1, 2, then we have the following finite-sample result

0 ≤EPo
QPo

(λ̄T )−QPo
(θ0)

≤EPo
QPo

(λ̃T )−QPo
(θ0)

+O

(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
+O

(
K(T )√
B

)
+O

(
c

K(T )

)
+A, (3.21)

where

A =
1

T
EPo

∫ τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
+

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λ̄T

)
]
dPo

− 1

T
EPo

∫ τ∑
t=1

EP b
T |Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
+

T∑
t=τ+1

EP b
T |Ft−1

[
lI2,t(θ̂I2,λ̄T

)
]
dP b

T

+
1

T
EPo

∫ τ∑
t=1

EP b
T |Ft−1

[
lI1,t(θ̂I1,λ̃T

)
]
+

T∑
t=τ+1

EP b
T |Ft−1

[
lI2,t(θ̂I2,λ̃T

)
]
dP b

T

− 1

T
EPo

∫ τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̃T

)
]
+

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λ̃T

)
]
dPo.

Note that the third to sixth terms of the right-hand side of the inequality

(3.21) all contain K(T ) (reflecting the number of λT users set over the interval

[0, c]), which measures the bias of the point estimates of parameters caused by

λT . Specifically, the third to fifth terms imply that the larger K(T ) is, the

higher the risk is; however, the sixth term indicates that the larger K(T ) is,

the smaller the bias is. Hence, users need to build a trade-off in practice when
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they set the number of λT . Now let us consider the other elements in these

terms except for K(T ). First, the third and fourth terms measure the bias of

point estimates of parameters caused by different lengths of the time series, i.e.,

T , τ , and T − τ . Moreover, the fifth term measures the bias caused by the

number of bootstrap sequences generated, which implies that one should take

B sufficiently large. The last term measures the bias caused by c, the restriction

matrix W , the bootstrap scheme, and whether the model is misspecified. There

are several remarks about the last term. c and W can affect the estimates of

parameters (thus affect P b
T ). If c is small, it probably causes A to be large. If

W is not fully correct, then A may become large. But since λT → 0 as T → ∞,

the penalty term λT ‖Wθ‖2 will disappear gradually whatever W is correct or

not. In addition, if the bootstrap scheme one uses can not ensure P b
T → Po as

T → ∞ even if the model specification is correct, then the last term will not

disappear. If the model is misspecified, then we believe that this term also is

likely not to disappear as T → ∞ no matter what the bootstrap scheme is.

Theorem 9 is general and it can directly apply to the bootstrap schemes that

can generate B bootstrap sequences. According to (3.18) in section 4, we can

take c = O(1/ 8
√
T ). Then we have a general corollary, which is also applicable

for the bootstrap schemes that can generate B bootstrap sequences, as follows.

Corollary 10. Suppose that assumptions of Theorem 9 hold and take c =

O(1/ 8
√
T ), then we have the following finite-sample result

0 ≤EPo
QPo

(λ̄T )−QPo
(θ0)

≤EPo
QPo

(λ̃T )−QPo
(θ0)

+O

(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
+O

(
K(T )√
B

)
+O

(
1

8
√
TK(T )

)
+A.
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The explanation of each term in the inequality above is similar to (3.21). Now

let us consider what conditions can make the last term A in (3.21) disappear.

Theorem 11 provides an answer.

Theorem 11. Suppose that the assumptions of Theorem 9 and Lemma 1 hold

and c → 0 as T → ∞. If the model specification is correct and we use the

TMLE bootstrap procedure to generate the bootstrap sequences, then we have the

following result

0 ≤EPo
QPo

(λ̄T )−QPo
(θ0)

≤EPo
QPo

(λ̃T )−QPo
(θ0)

+O

(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
+O

(
K(T )√
B

)
+O

(
c

K(T )

)
+ op(1).

This theorem shows that A will disappear in probability as T → ∞ if the

model specification is correct and we use the TMLE bootstrap with c = o(1). In

addition, we can take c = O(1/ 8
√
T ), then a corollary for the TMLE bootstrap

holds as follows.

Corollary 12. Suppose that assumptions of Theorem 11 hold and take c =

O(1/ 8
√
T ), then we have the following result

0 ≤EPo
QPo

(λ̄T )−QPo
(θ0)

≤EPo
QPo

(λ̃T )−QPo
(θ0)

+O

(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
+O

(
K(T )√
B

)
+O

(
1

8
√
TK(T )

)
+ op(1).
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3.6 Artificial simulation

In this section, we present evidence on the performance of the TMLE based on

simulation experiments using artificial data generated from a two-variable VAR

model,

rt = c+ b ∗ rt−1 + ξt, ξt ∼ N(0,Ω),

where

c =

c1
c2

 , b =

b11 0

0 b22

 ,Ω =

 σ2
1 σ12

σ21 σ2
2

 ,

with a penalty term, λ×(b22 − b11)
2. Considering its three competitors (i.e, the

1SMLE, 2SQMLE, and MLE), we also present their results. Note that setting

b as a diagonal matrix is to ensure the estimation consistency of the 2SQMLE.

To assess how well the TMLE performs across different sample sizes of the

long time series (i.e., T ), sample sizes of the short time series (i.e., T − τ),

parameter values of the long time series and short time series (i.e., b22 and b11),

which can reflect whether the restriction matrix is fully correct, and degrees of

tying parameters (i.e., λ), we consider three cases as follows:

Case 1: c =

1

1

 , b =

0.1 0

0 0.1

 , Ω =

 1 0.1

0.1 1

 ,

Case 2: c =

1

1

 , b =

0.1 0

0 0.2

 , Ω =

 1 0.1

0.1 1

 ,
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Case 3: c =

1

1

 , b =

0.1 0

0 0.3

 , Ω =

 1 0.1

0.1 1

 .

Then for each case, we set T − τ = cT a, where a = 1/2, c = 0.5, 1, 2,

T = 100, 400, 900; in addition, we also set T = 900 and τ = 450 for each case.

We randomly generate 1000 simulated datasets for each variant. Moreover, we

set λ ∈ Λ, where

Λ = {0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000},

and use the TMLE bootstrap and fixed-design wild bootstrap to select λ, re-

spectively. We use notation TMLE1 for the results of the fixed-design wild

bootstrap and TMLE2 for the results of the TMLE bootstrap. For each estima-

tion method, we focus on the point estimate of b and measure the estimation

accuracy of i-th diagonal element in b using the mean-squared error:

MSEi =
1

1000

1000∑
j=1

(b̂jii − bii)
2, i = 1, 2,

where b̂jii refers to the fitted value of bii using j-th simulated dataset. In addition,

we use MSE = MSE1 + MSE2 to measure the estimation precision of b11 and

b22 as a whole.

Table 3.1 presents the MSE of point estimates of b for different estimation

methods. According to the results of Table 3.1, we can make the following

observations. First, when the restriction matrix is absolutely correct (i.e., case

1), the performance of the TMLE1 and TMLE2 for the estimation results of

b11 and b22 as a whole (i.e., MSE) is better than that of the other estimation

methods for all settings, which reflects the strength of transferring information

between different series. In addition, the superiority of the TMLE1 and TMLE2
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over the MLE is also consistent with Theorem 6. Moreover, although the results

of the TMLE1 are similar to the TMLE1, the TMLE2 outperforms TMLE1 for

some settings.

Second, TMLE1 and TMLE2 still have a higher estimation accuracy for

most settings relative to the other methods even if the restriction matrix is

not completely correct (i.e., case 2 and case 3), which implies that transferring

information is still on working. In addition, as Theorem 6 shows, the risk bound

of the TMLE still could be less than that of the MLE when the restriction matrix

is not fully correct. Furthermore, TMLE1 and TMLE2 have similar results, but

it is hard to say which is better.

Third, as for the TMLE1, no matter what T is, the MSE of b11 and b22 has

a downward trend as the sample size of the short time series increases (i.e., τ

decreases), which is reasonable because the larger the sample size is, the higher

the estimation accuracy is. Similarly for the TMLE2.

To show the effectiveness of the TMLE bootstrap and fixed-design wild boot-

strap, we provide the bar charts of λ determined by two bootstrap procedures

for 1000 simulated datasets of Cases 1 – 3 with T = 900 in Figures 3.2 – 3.4.

As for Case 2 and Case 3, two bootstrap procedures are both inclined to select

small λ when τ = 450, which indicates that two bootstrap schemes are effec-

tive because, for a restriction matrix that is not absolutely correct, λ needs to

become small when the sample size T − τ is large. However, for Case 1, two

bootstrap procedures do not have an obvious trend for selecting λ, which is

reasonable because the risk bound of the TMLE is always less than or equal to

that of the MLE when the restriction matrix is completely correct.

For more details about the MSE of point estimates of b for different esti-

mation methods, see Tables B.1 – B.30 and Figures B.1 – B.60 in Appendix

B.
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3.7 Empirical application

In this section, we present evidence on the performance of TMLE on point fore-

casts and point estimates using daily returns series of Facebook stock (starting

on 18th May 2012) and Twitter stock (starting on 7th November 2013). Note

that the initial time of Twitter stock is approximately one and a half years later

than that of Facebook. Since Facebook and Twitter are both social networking

sites that make it easy for people to get the latest news, communicate in short

messages and share with family and friends online, it is reasonable that we can

transfer some useful information between Facebook stock and Twitter stock to

improve predictive accuracy.

Two time series are transformed to be stationary by the difference of the log

return. We consider a simple VAR model for these two stocks:

rt = c+ b ∗ rt−1 + ξt, ξt ∼ N(0,Ω),

where

rt =

Facebookt

Twittert

 , c =

c1
c2

 , b =

b11 0

0 b22

 ,Ω =

 σ2
1 σ12

σ21 σ2
2

 .

The penalty term is set as λ× (b22 − b11)
2. As we mentioned before, to ensure

the estimation consistency of 2SQMLE, we set b as a diagonal matrix. We set

λ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

Considering the real values of parameters are unknown (unlike the artificial

simulation), we use the incremental window scheme and rolling window scheme

(these two schemes will be introduced later) to evaluate the performance of

the TMLE, MLE, 1SMLE, and 2SQMLE on point forecasts. For simplicity, we
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consider one-step-ahead point forecasts. Since the initial time of Twitter stock

is 7th November 2013, which means that Facebook has 386 observations before

this time point, we set τ = 386.

Incremental window scheme (τ is fixed) First, for the TMLE, MLE, and

2SQMLE, we use the first τ + 10 observations to predict τ + 11, while for the

1SMLE, we only use 10 observations (i.e., from τ+1 to τ+10) to predict τ+11.

Then, for the TMLE, MLE, and 2SQMLE, we use the first τ + 11 observations

to predict τ + 12, whereas for the 1SMLE, we use the sample from τ + 1 to

τ + 11 to predict τ + 12. We proceed recursively in this fashion until using the

first τ + 30 observations to predict τ + 31 (i.e., there are 21 times repeats) and

obtain a sequence of forecasts from τ+11 to τ+31 for each method. We call this

kind of scheme Incremental Window Scheme. For each estimation method, we

measure the precision of the one-step-ahead point forecast for the i-th variable

in rt using the mean-squared error:

MSEi =
1

21

τ+31∑
t=τ+11

(rit − r̂it)
2, i = 1, 2,

where rit and r̂it means the real value and fitted value of the i-th variable,

respectively. In addition, we use MSE = MSE1+MSE2 to measure the predictive

accuracy of both variables as a whole.

Table 3.2 presents the MSE of one-step-ahead point forecasts for different

estimation methods. Note that in this table, to illustrate the performance of

the TMLE, we also present the result of each fixed λ besides the results of the

fixed-design wild bootstrap and TMLE bootstrap. Obviously, the performance

of TMLE1 and TMLE2 for two stocks is better than the 1SMLE, 2SQMLE and

MLE even though most fixed λ do not have lower MSEn, which indicates the

effectiveness of two bootstrap procedures and the importance of transferring
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information between Facebook and Twitter. Since we carry out the incremental

window, which means that the samples for different windows are different (the

sample sizes are also different), a fixed λ may not always have a good perfor-

mance for different samples. In addition, if the penalty (i.e., (b22 − b11)
2) is not

absolutely correct, as Theorem 6 shows, then the risk bound of the TMLE for

a fixed λ is possible to be greater than that of the MLE. These factors could be

responsible for the bad results of some fixed λ.

For more details about the MSE of one-step-ahead point forecasts for differ-

ent estimation methods, please see Figures B.61 in Appendix B.

Table 3.2: MSE of one-step-ahead point forecasts (×103)

1SMLE 2SQMLE MLE 0.1 0.2
Facebook 0.82766 0.71878 0.72090 0.71737 0.72165
Twitter 1.78381 1.77383 2.93286 1094.68508 21.31037
MSE 2.61147 2.49260 3.65376 1095.40246 22.03201

0.3 0.4 0.5 0.6 0.7
Facebook 0.71612 0.72125 0.72990 0.71874 0.72034
Twitter 29.48607 2.55703 140.24896 1.35252 1.70274
MSE 30.20219 3.27828 140.97886 2.07126 2.42308

0.8 0.9 1 TMLE1 TMLE2

Facebook 0.71734 0.74328 0.72056 0.72019 0.71704
Twitter 8.31766 3.73829 2.63857 1.71385 1.56719
MSE 9.03500 4.48157 3.35913 2.43404 2.28423

Rolling window scheme (τ is not fixed) In this scheme, we consider three

cases: T − τ = 10, 20, and 30. Then for each case, we conduct 100 times

rolling windows. Firstly let us consider T − τ = 10. For the TMLE, MLE, and

2SQMLE, we use the first T observations (i.e., from 1 to 396) to predict T + 1

(i.e., 397), while for the 1SMLE, we only use the sample from τ + 1 to T (i.e.,

from 387 to 396) to predict 397. Then, for the TMLE, MLE, and 2SQMLE,

we use the sample from 2 to 397 to predict 398, while for the 1SMLE, we use
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the sample from 388 to 397 to predict 398. We proceed recursively 100 times

in this fashion and obtain a sequence of forecasts from T + 1 to T + 100 for

each method. We call this kind of scheme Rolling Window Scheme. Similarly

for T − τ = 20 and 30. For each estimation method, we measure the precision

of the one-step-ahead point forecast for the i-th variable in rt using the mean-

squared error:

MSEi =
1

100

T+100∑
t=T+1

(rit − r̂it)
2, i = 1, 2.

In addition, we use MSE = MSE1 + MSE2 to measure the predictive accuracy

of both variables as a whole.

Table 3.3 presents the MSE of one-step-ahead point forecasts for different

T − τ . We can make the following observations. First, no matter what T − τ

is, the TMLE1 always has a smaller MSE relative to the MLE, 1SMLE, and

2SQMLE, which shows the strength of the TMLE. In addition, except for the

case of T − τ = 10, the performance of the TMLE2, which is similar to the

TMLE1, is also better than that of the MLE, 1SMLE, and 2SQMLE. A possible

reason for the value of MSE of TMLE2 in the case of T − τ = 10 is that the

restriction matrix may not be completely correct. Second, the results of two

bootstrap procedures always outperform those of most fixed λ regardless of the

value of T−τ , which illustrates the effectiveness of these two bootstrap schemes.

For more details about the MSE of one-step-ahead point forecasts for differ-

ent T − τ , please see Figures B.62 in Appendix B.
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Table 3.3: MSE of one-step-ahead point forecasts (×103)

T − τ = 10 1SMLE 2SQMLE MLE 0.1
Facebook 1.20400 0.94183 0.94260 0.94196
Twitter 3.69535 3.01583 485.97022 815.70323
MSE 4.89934 3.95766 486.91282 816.64518

0.2 0.3 0.4 0.5
Facebook 0.94247 0.94137 0.94066 0.94267
Twitter 380.15132 17.27060 247.06155 542.10955
MSE 381.09380 18.21197 248.00221 543.05222

0.6 0.7 0.8 0.9
Facebook 0.94217 0.94127 0.94136 0.94289
Twitter 717.20961 339.79032 221.06816 94.96909
MSE 718.15178 340.73159 222.00953 95.91198

1 TMLE1 TMLE2

Facebook 0.93805 0.94112 0.94173
Twitter 30.71435 2.46913 28.31215
MSE 31.65240 3.41024 29.25388

T − τ = 20 1SMLE 2SQMLE MLE 0.1
Facebook 1.04551 0.93421 0.93723 0.93469
Twitter 2.47891 2.51346 2.84234 2.71165
MSE 3.52442 3.44768 3.77957 3.64634

0.2 0.3 0.4 0.5
Facebook 0.93377 0.93356 0.93533 0.93587
Twitter 2.48792 2.60636 3.30514 31.23080
MSE 3.42169 3.53992 4.24047 32.16667

0.6 0.7 0.8 0.9
Facebook 0.93754 0.93429 0.93403 0.93334
Twitter 2.33397 2.51340 2.43808 2.86767
MSE 3.27151 3.44769 3.37211 3.80101

1 TMLE1 TMLE2

Facebook 0.93880 0.93326 0.93601
Twitter 3.99274 2.45675 2.45774
MSE 4.93154 3.39001 3.39375

T − τ = 30 1SMLE 2SQMLE MLE 0.1
Facebook 0.92975 0.88209 0.88241 0.88282
Twitter 2.71266 2.74225 2.80535 2.63770
MSE 3.64241 3.62435 3.68776 3.52052

0.2 0.3 0.4 0.5
Facebook 0.88365 0.88360 0.88357 0.88367
Twitter 3.72562 2.63030 2.63407 2.67958
MSE 4.60926 3.51390 3.51764 3.56325

0.6 0.7 0.8 0.9
Facebook 0.88668 0.88429 0.88441 0.88399
Twitter 2.62512 2.65238 2.62699 13.54607
MSE 3.51180 3.53667 3.51140 14.43006

1 TMLE1 TMLE2

Facebook 0.88405 0.88505 0.88394
Twitter 2.79534 2.65173 2.63505
MSE 3.67938 3.53678 3.51899
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3.8 Conclusion

In this study, we introduce the parameter tying technique in Few-shot Learning

to econometrics and pioneer the TMLE to solve the problem that using the

traditional MLE to estimate econometric or statistical models does not have

a good performance for a type of irregular dependent data where the sample

sizes of most series are very large, whereas the other series only have a few

observations.

The proposed TMLE can be used directly as long as the likelihood func-

tions of econometric or statistical models exist, which means that it has an

enormous application range. We provide the asymptotic theory of the TMLE

and detailedly describe its asymptotic properties. In addition, we provide the

risk bound of the TMLE and present the strength of the TMLE relative to

the traditional MLE. Moreover, we propose an effective bootstrap procedure to

select an apt tuning parameter. Furthermore, we provide the finite-sample the-

ory of this bootstrap, which presents some important implications for practical

applications.

Extensive artificial simulations and empirical applications show that the

performance of the TMLE is significantly better than the MLE, 1SMLE, and

2SQMLE.
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Chapter 4

How Has the COVID-19 Pandemic Im-

pacted the Consumer Price Index? Evi-

dence from China

4.1 Introduction

The consumer price index (CPI) recently became one of the most important

macroeconomic indicators to measure changes over time in the price level of

consumer goods and services purchased by a country’s residents. As we know,

the unexpected disaster of the COVID-19 pandemic fundamentally impacts ev-

ery facet of our existence by wreaking havoc in health-care systems, leading to a

massive death toll and causing profound socioeconomic disruption. Unsurpris-

ingly, the prices of a broad range of commodities are also affected.

There is no doubt that consumer prices affect people’s livelihoods and that

fluctuations in prices directly affect residential consumption and manufacturers’

production. Hence, it is imperative to explore the impact of the pandemic on

the prices of goods and services systematically, which will offer policymakers

new insights into how to best combat the deleterious effects of the pandemic.
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A large number of studies explore this topic. Specifically, quite a few studies

focus on how COVID-19 affected the general price level of goods and services in

different countries (e.g., Reinsdorf, 2020; Kouvavas et al., 2020; Cavallo, 2020;

Yan and Qian, 2020; Mohsin et al., 2021; Mendez-Carbajo, 2021; CEPAL, 2021;

Laskowski et al., 2022). Furthermore, some studies only focus on the impact of

the pandemic on the prices of food (e.g.,Mead et al., 2020; Leone et al., 2020;

Coluccia et al., 2021), alcohol (e.g., Castaldelli-Maia et al., 2021), and agricul-

ture (e.g., Ramakumar, 2020; Pu and Zhong, 2020; Siche, 2020). However, these

studies are primarily descriptive in nature. In addition, there are some studies

that analyze the impact of the pandemic on prices by statistical modeling. For

example, Ho et al. (2021) and Aliefendioğlu et al. (2021) analyze the impact

of the pandemic on housing and transport prices using a multivariate linear re-

gression model and nonlinear autoregressive distributed lag model, respectively.

Liu and Rabinowitz (2021) applies a regression discontinuity design to charac-

terize the immediate impacts of the pandemic on retail prices of dairy products

in the United States. Lusk et al. (2021) uses a multivariate linear regression

model to analyze beef and pork marketing margins and price spreads during

the pandemic. Hillen (2021) and Bairagi et al. (2022) analyze the impact of the

COVID-19 on food prices using a logit model and a reduced-form of inverse de-

mand function, respectively. However, these studies do not separate out other

factors that also affect the CPI, such as holidays or festivals. Although Amare

et al. (2020), Akter (2020), Çakır et al. (2021), Clair (2021), among others,

separate other factors that also affect the CPI of food, health-care, and hous-

ing prices, but they do not consider the dynamic features of the impact of the

pandemic on prices.

Hence, we empirically analyze the impact of the COVID-19 pandemic on

the different subindices of the CPI to address the limitations mentioned above.
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Note that three studies are similar to ours (i.e., Zhang et al., 2020, Chen et al.,

2021 and Uche et al., 2021), but they only focus on health-care services and

food supplies, whereas we also consider other commodities and services.

Specifically, the innovations of our paper are threefold. First, our data

are comprehensive. We collected a monthly CPI dataset of 31 provinces in

China over a 24-month span between September 2018 and August 2020. This

dataset comprises eight CPI categories: food, tobacco, and liquor; clothing;

housing; daily consumables; transport and communications; education, culture,

and recreation; health care; and other articles and services.

Second, the assessment of the consequences of the COVID-19 pandemic

presents an empirical challenge because a simple pre- versus postpandemic com-

parison of CPI values, for example, will not adequately capture the effect of the

pandemic when CPI changes are subject to inherent temporal trends. There-

fore, we adopt the difference-in-difference (DID) method to capture the impact

of the pandemic on the CPI. We regard the dataset from September 2019 to Au-

gust 2020, which is a 12-month span and includes the onset of the COVID-19

pandemic, as the experiment group. To construct the missing counterfactu-

als depicting the CPI changes in the absence of the pandemic, we rely on the

changes in the outcomes of the same set of the CPI categories observed during

a 12-month span that closely resembles the experiment group from one year

earlier. This feature renders the same set of the CPI that is observed from

September 2018 to August 2019 as a suitable control group for the purposes of

our analysis. For more details, see Section 2.

Third, to measure the impact of the pandemic on the eight CPI categories, we

consider two specifications. We first consider the average effect of the pandemic

on the CPI, that is, the impact on the CPI because of the outbreak of COVID-

19. We then measure the dynamics of the effect on the CPI over a period of
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time. The pace of the spread of the virus has varied over time and, moreover,

after the onset of the pandemic, some shops and restaurants introduced certain

measures, such as socially distanced dining and measuring temperatures, to cope

with the pandemic. Hence, the effect of the pandemic may vary from month to

month.

The contribution of our paper is that we provide a more in-depth analysis of

the impact of the COVID-19 pandemic on the CPI, obtain more definitive con-

clusions, and offer a deeper insight into policymaking using the monthly panel

data of the eight CPI categories in China. In addition, our empirical framework

provides a valuable reference for other similar studies. The empirical results

indicate that from January to August 2020, the pandemic had a persistent neg-

ative impact on housing and daily consumables, whereas no evidence was found

for a strong effect on health care prices. Regarding education, culture, and

recreation, the pandemic mainly had a persistent positive effect on the price

from January to June and then a negative effect for the next two months. In

addition, the pandemic could have a persistent positive effect on the price of

food, tobacco, and liquor from January to March and then a negative effect over

the following several months, while it may have a persistent negative impact on

clothing and transport and communications prices after January. Moreover,

there could be a mild strengthening of the positive effect on the price of other

articles and services following the outbreak of the pandemic.

The rest of the paper is organized as follows. Section 2 provides a detailed

description of our data. Section 3 develops our empirical approach. Section 4

presents and discusses the results. The final section concludes.
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4.2 Data

The source of our data is the China Economic Information Network Statistics

Database 1. We select the monthly CPI dataset for 31 provinces in China over

a 24-month span between September 2018 and August 2020. This dataset com-

prises eight CPI categories: food, tobacco, and liquor; clothing; housing; daily

consumables; transport and communications; education, culture, and recreation;

health care; and other articles and services.

The first instance of pneumonia of unknown cause in China was officially

registered on December 8, 2019. The first virus strain was successfully isolated

on January 7, 2020 and medical professionals confirmed that the pathogen was

a new type of coronavirus. On January 23, 2020, China’s central government

imposed a lockdown in Wuhan and other cities in Hubei Province in an effort

to put the center of the COVID-19 outbreak into quarantine. This was an

extremely critical point in time. In addition, although the first case was reported

on December 8, 2019, most people did not realize the seriousness of this unknown

virus during this month. Considering these points, we regard January 2020 as

when the COVID-19 pandemic began in China.

We split this dataset into two contiguous, nonoverlapping 12-month subpe-

riods. The first subperiod from September 2019 to August 2020 includes the

onset of the COVID-19 pandemic in January 2020. We refer to this subperiod

as the experiment group. The second subperiod from September 2018 and Au-

gust 2019 covers the exact same number of months as the experiment group but

begins one year earlier when the CPI of each province was not subject to any

noteworthy shocks or legislative changes. We refer to this second subperiod as

the control group. As we clarify in the next section, the two-group structure of

our data allows the estimation of the effect of the COVID-19 pandemic on CPI.
1See https://db.cei.cn/
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Table 4.1 presents the basic descriptive statistics for the CPI data that we use

in the analysis for both the experiment group (part A) and control group (part

B). In the experiment group, from September 2019 to December 2019 (part A1),

the mean price and standard deviation of food, tobacco, and liquor are clearly

much higher than those for the other CPI categories; therefore, food, tobacco,

and liquor prices experienced large fluctuations over this time, which continued

from January 2020 to August 2020 (part A2). Moreover, the standard deviations

of some CPI categories, such as transport and communications, increased after

the outbreak of the pandemic outbreak, which suggests that the pandemic could

affect the prices of these items. Nevertheless, in the control group, the means

and standard deviations of the eight CPI categories are all similar in the pre-

January and post-January periods. In addition, the results for part B1 are

similar to that of part B2.
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4.3 Empirical approach

Two simple approaches can be used to examine the consequences of the pandemic

on the different CPI categories. One approach is to compare the value of the

CPI after January with the value prior to January in the experiment group, that

is, by contrasting the means in part A2 with part A1 of Table 4.1. However,

this approach does not separate out other factors that also affect the CPI. For

instance, the post-January period subsumes the holiday season in January and

February, when the CPI naturally rises every year. Therefore, a post-January

versus pre-January comparison alone would unlikely yield a compelling estimate

for the effect of the pandemic. Alternatively, one might contrast the post-

January outcomes in the experiment group with the post-January outcomes in

the control group, that is, by comparing the mean for the outcomes in part

A2 and part B2 of Table 4.1. However, the comparison of the post-January

outcomes in the experiment group with the post-January outcomes in the control

group does not address the concern that the experiment and control groups differ

in unobserved ways, which confounds the estimate of the effect of the pandemic.

To address the deficiencies inherent in the two simple approaches described

above, we use a DID approach and exploit the exogenous nature of the pandemic

to analyze its impact on the CPI. First, we posit the following general model:

ygroup,it = β0 + β1post× group+ β2group+ ui + λt + ϵgroup,it, (4.1)

where group is equal to 1 if the observation is from the experiment group and 0

if it is from the control group, i refers to the i-th province, t means the month

(from September to August in the following year), ygroup,it represents the eight

CPI categories, which are listed in the first column in Table 4.1, post is a dummy

variable equal to 1 if the observation is from January or later, ui is the individual
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fixed effect, which absorbs the time-invariant impact on explained variables, λt

is the month fixed effect, which absorbs the time-varying common trend of all

units over time, ϵgroup,it denotes the error term.

The coefficient of interest in the regression equation (4.1) is β1 and it denotes

a DID estimate of the impact of the COVID-19 pandemic on the CPI. Table 4.2

presents the rationale of the DID estimation by (4.1). Specifically, the expected

value of the CPI before January in the experiment group is β0 + β2 + ui + λpre

in accordance with (4.1), whereas after January it becomes β0 + β1 + β2 +

ui + λpost. Hence, the difference, β1 + (λpost − λpre), captures the difference

between the post-January and pre-January changes in the CPI in the experiment

group. However, we can not observe the post-January CPI for the case where

no pandemic began in 2020. To construct a pertinent counterfactual, we use

the changes, λpost−λpre, between the post- and pre-January CPI in the control

group. By subtracting λpost − λpre from β1 + λpost − λpre, that is, β1, provides

a DID estimate of the effect of the pandemic on the CPI.

Table 4.2: DID estimate of the COVID-19 pandemic

pre-Jan. post-Jan. difference
Experiment group

(Sep.2019–Aug.2020) β0 + β2 + ui + λpre β0 + β1 + β2 + ui + λpost β1 + λpost − λpre

Control group
(Sep.2018–Aug.2019) β0 + ui + λpre β0 + ui + λpost λpost − λpre

difference β2 β1 + β2 β1

The estimate of β1 based on (1) is informative of the average effect of the

pandemic on the eight CPI categories. To gain further insight into whether,

and if so how, the effect of the pandemic has varied over time, we estimate the
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following specification:

ygroup,it = θ0 +
∑
t

θtmontht × group+ θ2group+ ui + λt + egroup,it, (4.2)

where montht is a dummy equal to 1 if the observation is from a specific month t

from the 9 months from December to August in the following year. We omit De-

cember and use this month to compare all the month-by-month effects. egroup,it

is the error term. The remaining elements of the equation (4.2) are as defined

in (4.1).

Note that in this study we estimate all models using OLS. Considering there

could be a serial correlation in the error terms, then the cluster-robust standard

errors (i.e., the robust standard errors clustered at the level of provinces, see

Cameron and Miller, 2015) could be an alternative. But this standard errors, as

Cameron and Miller (2015) and Greene (2018) mentioned, have a downward bias

when the number of clusters (i.e., the number of provinces) is small. Since there

are only 31 provinces in this study, which means that the number of clusters is

small, it is hard to say that the cluster-robust standard errors are better than

usual standrad errors. In this study we base inference on a larger one of two

standard errors for a conservative inference and these two standard errors are

presented in all tables.

If the CPI in the control group we chose can serve as a good control group

for the CPI in the experiment group, then the change in CPI should be the same

for both groups in the absence of the pandemic (i.e., two groups have parallel

trends). We present the temporal evolution of the cross-sectional mean of the

monthly CPI of 31 provinces from September 2019 to August 2020 (experiment

group) and from September 2018 to August 2019 (control group) in Figure

4.1. In the figure, some CPI categories prior to January in the experiment and

control groups exhibit comovement, which seems to indicate that the parallel
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trends assumption could be apt. To judge this better, we carry out two simple

DID regressions as placebo tests. Specifically, for the first regression, we divide

the dataset from September to December in the experiment and control groups

into two subperiods. The first subperiod is from September to October and the

second is from November to December. Then for these two subperiods, we use

the equation (4.3) to estimate b1.

ygroup,it = b0 + b1post
∗ × group+ b2group+ ui + λt + ξgroup,it, (4.3)

where post∗ is equal to 1 if the observation is from the second subperiod (i.e.,

November and December) and 0 if it is from the first subperiod (i.e., September

and October), ξgroup,it is the error term, and the remaining elements are as

defined in (4.1). The estimate of b1 for each CPI is listed in Table 4.3. As

for housing, daily consumables, education, culture, and recreation, and health

care, the point estimates of b1 are statistically non-significant, which means that

the parallel trends assumption probably hold in our context for these four CPI

categories. However, the results of the other CPI are statistically significant,

which indicates that the control group we selected for these CPI categories could

not serve as a good control group (i.e., the parallel trends assumption could not

be apposite).

Now we consider the second DID regression as follows:

ygroup,it = ϕ0 +
∑
t

ϕtmonth
∗
t × group+ ϕ2group+ ui + λt + ηgroup,it, (4.4)

where month∗t is a dummy equal to 1 if the observation is from a specific month

t from the 12 months from September to August in the following year. We

omit December and use this month to compare the results of the other months.

ηgroup,it is the error term. The remaining explanatory variables of expression
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(4.4) are as defined in (4.1). Figure 4.2 shows the point estimates of ϕt and

corresponding 95% confidence intervals based on a larger one of two standard

errors for the eight CPI categories. For housing, daily consumables, education,

culture, and recreation, and health care, all piont estimates prior to December

are statistically non-significant, which means that the parallel trends assumption

probably hold for these four CPI; in addition, there are some statistically signif-

icant results after December for housing, daily consumables, education, culture,

and recreation, which indicates that the pandemic is likely to have an evident

impact on these CPI. As for the remaining CPI, some estimation results prior

to December are statistically significant, which means that the parallel trends

assumption could not hold for these CPI.

Combining the results of two placebo tests, we believe that the parallel trends

assumption seems an apposite one to make for housing, daily consumables,

education, culture, and recreation, and health care. Hence, the results of the

subsequent analysis for these four CPI categories are likely to be more convincing

than for the remaining CPI. However, the reader should keep in mind that the

parallel trends assumption is inherently untestable.

Table 4.3: The point estimates of b1 for the eight CPI categories

CPI Food, tobacco, and liquor Clothing Housing Daily consumables

b1

3.5623∗∗∗

(0.4473)
(0.2192)

−0.6274∗∗∗

(0.1991)
(0.1556)

−0.1226
(0.1244)
(0.0839)

−0.1733
(0.1242)
(0.0488)

CPI Transport and
communications

Education, culture,
and recreation Health care Other articles

and services

b1

1.4585∗∗∗

(0.1484)
(0.1053)

0.0697
(0.1858)
(0.1389)

−0.0972
(0.3187)
(0.0746)

−1.1540∗∗∗

(0.1816)
(0.1203)

Notes: (a) we estimate b1 in the regression equation, ygroup,it = b0+b1post
∗×group+b2group+ui+

λt+ ξgroup,it, using 248 observations for each CPI. (b) ***, **, and * denote statistical significance at
the 1%, 5%, and 10% levels, respectively. The usual standard errors and the cluster-robust standard
errors of b1 are in the first and second parenthesis, respectively. We base inference on a larger one of
two standard errors for a conservative inference.
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Figure 4.1: Temporal evolution of the cross-sectional mean of the monthly CPI
of 31 provinces in the experiment group (Sep.2019-Aug.2020) and control group
(Sep.2018-Aug.2019).
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Figure 4.2: (1) The point estimates and corresponding 95% confidence intervals
(based on a larger one of two standard errors) of ϕt for the eight CPI categories.
(2) We estimate ϕt in the regression, ygroup,it = ϕ0 +

∑
t ϕtmonth

∗
t × group +

ϕ2group+ ui + λt + ηgroup,it, using 744 observations for each CPI.
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4.4 Results

In this section, we present the average and month-by-month effects of the

COVID-19 pandemic on the eight CPI categories and provide some possible

explanations for this.

The second column in Table 4.4 presents the estimation results of the average

effect (β1) of the pandemic on different CPI categories. The pandemic has

a negative impact that is statistically significant on clothing, housing, daily

consumables, transport and communications prices, while it does not have a

significant effect on the remaining CPI categories.

The results from the third column to the last column in Table 4.4 show

the estimates of the month-by-month effect (θt) from January 2020 to August

2020. For each CPI, apart from health care, most of the estimation results of βt

are statistically significant, which indicates that the pandemic has a significant

effect on these CPI. To better show the dynamic trend of the month-by-month

effect, each part of Figure 4.3 summarizes the results for a specific CPI category.

Note that the omitted (comparison) month is December, which is the month

immediately preceding the onset of the pandemic.

For food, tobacco, and liquor, part (a) shows that the pandemic has a per-

sistent positive effect on the price in January, February, and March and then

has a negative effect over the following several months. The offset positive and

negative effects of the pandemic during different periods could explain the sta-

tistical non-significance of the estimation result of the average effect. These

commodities, generally speaking, are necessities, hence the pandemic can not

significantly affect people’s demands. However, the supply of these goods can

be affected by the pandemic because many stores and manufacturers are asked

to be closed during the initial months of the pandemic. Hence, the demand
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can exceed the supply, which means that the price probably increases. But the

supply recovers gradually as the pandemic eases, which means that the price

could decrease. This provides a possible explanation for the dynamic effect of

the pandemic.

Parts (b), (c), and (d) present that the pandemic has had a persistent neg-

ative effect on clothing, housing, and daily consumables prices since January

and this negative effect is also reflected by the negative estimation results of

the average effect. We believe that these commodities can not be purchased fre-

quently for a short period of time except for some necessary expenses (e.g., water

or electricity bills). In addition, people are likely to reduce the consumption of

these goods because of falling incomes and rising unemployment risks. Hence,

declining demand for these goods during the pandemic is a possible reason for

falling prices.

Part (e) traces out the month-by-month effect of the pandemic on transport

and communications prices. There is a positive effect in January and then

a persistent negative effect over the following several months. The persistent

negative effect from February to August exceeds the positive effect in January

such that on the whole the pandemic has a negative effect on the prices, which

is the same as the negative estimation result of the average effect. Many people

are eager to return home because of the panic caused by the pandemic outbreak,

which is likely to be responsible for a temporary rise in the price in January.

Then the government asked people not to go out or travel unless necessary in

order to prevent the spread of the pandemic, which could be a factor for a

persistent drop in the price after February. As the pandemic eases gradually,

people can go outside or travel freely, which provides a possible explanation for

a persistent drop in the negative effect after May.

For education, culture, and recreation, part (f) presents that the pandemic
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mainly has a positive effect on the price of these commodities from January to

June and then has a persistent negative effect over the following two months.

The offset positive and negative effects of the pandemic during different peri-

ods could explain the statistical non-significance of the estimation result of the

average effect. The decreased supply of these goods because many stores are

asked to stop operations or shorten business hours could be responsible for the

price increase during the initial months of the pandemic. The supply recovers

gradually as the pandemic eases, which could lead to a drop in the price.

Part (g) shows that the month-by-month effect of the pandemic on health

care is statistically non-significant, which is the same as that of the average

effect. A possible reason is that, in China, the government controls the prices

of most drugs and medical facilities, which means that the pandemic could not

have a significant impact on their prices.

Part (h) reveals that the pandemic has had a persistent positive effect on

other articles and services since January and this positive effect is also reflected

by the positive estimation result of the average effect. Considering other articles

and services mainly include insurance, beauty salons, jewelry, watches, and bags,

we believe that people are likely to increase the demand for insurance out of

concern for the uncertainty in the future caused by the pandemic, which is a

possible factor for the price rise.
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Figure 4.3: (1) The point estimates and corresponding 95% confidence intervals
(based on a larger one of two standard errors) of θt for the eight CPI categories.
(2) We estimate θt in the regression, ygroup,it = θ0 +

∑
t θtmontht × group +

θ2group+ ui + λt + egroup,it, using 558 observations for each CPI.
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4.5 Conclusion

In this paper, we used a DID approach and a monthly panel for eight CPI

categories in 31 provinces of China over a 24-month period between September

2018 and August 2020 to provide empirical insights into the consequences of the

COVID-19 pandemic for the CPI.

The empirical results indicated that from January to August 2020, the pan-

demic had a persistent negative impact on housing and daily consumables,

whereas no evidence was found for a strong effect on health care prices. Regard-

ing education, culture, and recreation, the pandemic mainly had a persistent

positive effect on the price from January to June and then a negative effect for

the next two months. In addition, the pandemic could have a persistent positive

effect on the price of food, tobacco, and liquor from January to March and then

a negative effect over the following several months, while it may have a persis-

tent negative impact on clothing and transport and communications prices after

January. Moreover, there could be a mild strengthening of the positive effect on

the price of other articles and services following the outbreak of the pandemic.

Therefore, the government should implement certain measures, such as some

type of fiscal stimulus, to increase the demand for housing and daily consum-

ables so that their prices can recover to normal levels. Furthermore, it may be

appropriate for the government to stimulate consumer demand for clothing and

to allow more stores or manufacturers to open to increase the supply of other

articles and services.
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Chapter 5

Conclusion

In this dissertation, we develop several new econometric models and statistical

methods to solve some problems in dependent data analysis.

In the second chapter, we propose the TVS-ADF model by extending the

ADF model to capture the dynamic economic characteristics. In addition, we

provide the effective MCMC algorithm including shrinkage and sparsification to

estimate the TVS-ADF model. Since in this study, we suppose that the number

of latent common factors is given, we will develop an effective method for the

determination of the number of factors in future research.

In the third chapter, we pioneer the TMLE using the parameter tying tech-

nique to improve the performance of statistical and econometric models for a

type of irregular dependent data that most of the time series have long sample

periods, whereas the others are very short. We provide the asymptotic and

finite-sample theories for the TMLE. In the future, we will consider different

penalty forms and selection methods of the tuning parameter.

In the fourth chapter, we provide an in-depth empirical analysis of the con-

sequences of the COVID-19 pandemic for the CPI using a DID method and the

monthly panel data of the eight CPI categories in China, which gives a deeper

insight into policymaking. Future research will consider the COVID-19 deaths
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and enlarge the samples to offer a more systematic analysis.
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Chapter A

Appendix A: Chapter 1

Table A.1: Data description

No. Variable Description
Group 1: Real Activity

1 CLF Civilian Labor Force
2 CE Civilian Employment
3 CUR Civilian Unemployment Rate
4 RPI Real Personal Income
5 HSTNPO Housing Starts: Total New Privately Owned
6 NPHP New Private Housing Permits (SAAR)
7 RPCE Real personal consumption expenditures

Group 2: Money, Credit and Finance
8 TRDI Total Reserves of Depository Institutions
9 M1MS M1 Money Stock
10 M2MS M2 Money Stock
11 CIL Commercial and Industrial Loans

Group 3: Exchange rate
12 EXJPUSx Japan/U.S. Foreign Exchange Rate

Group 4: Price
13 PPI:CM PPI: Crude Materials
14 PPI:IM PPI: Intermediate Materials
15 PPI:FG PPI: Finished Goods
16 CPI:AI PPI: All Items
17 PCE:CI Personal Cons. Expend.: Chain Index

Group 5: Expectations
18 CSI Consumer Sentiment Index
19 NOCG New Orders for Consumer Goods
20 TBI Total Business Inventories

Group 6: Monetary policy (interest rate)
21 EFFR Effective Federal Funds Rate
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(a) 10% sparsity level and T = 50
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(b) 10% sparsity level and T = 200
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(c) 50% sparsity level and T = 50
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(d) 50% sparsity level and T = 200
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(e) 90% sparsity level and T = 50
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(f) 90% sparsity level and T = 200

Figure A.1: MSEi of three models with 4 explanatory variables (n = 20)
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(a) 10% sparsity level and T = 50
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(b) 10% sparsity level and T = 200
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(d) 50% sparsity level and T = 200
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(e) 90% sparsity level and T = 50
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(f) 90% sparsity level and T = 200

Figure A.2: MSEi of three models with 8 explanatory variables (n = 20)
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(a) 10% sparsity level and T = 50
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(b) 10% sparsity level and T = 200
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(c) 50% sparsity level and T = 50
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(d) 50% sparsity level and T = 200
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(e) 90% sparsity level and T = 50
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(f) 90% sparsity level and T = 200

Figure A.3: MSEi of three models with 4 explanatory variables (n = 30)
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(a) 10% sparsity level and T = 50
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(b) 10% sparsity level and T = 200
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(c) 50% sparsity level and T = 50
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(d) 50% sparsity level and T = 200
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(f) 90% sparsity level and T = 200

Figure A.4: MSEi of three models with 8 explanatory variables (n = 30)
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Chapter B

Appendix B: Chapter 2

B.1 Technical Lemmas

Lemma 13. Let the parameter space Θ be a compact and convex subset of RK .

For all θ ∈ Θ, lt(θ) is a measurable function of a strong mixing process with

mixing coefficients α(·), where α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1. A

measurable function l̃t exists such that |lt(θ)− lt(θ̄)| ≤ ‖θ− θ̄‖l̃t for any θ, θ̄ ∈ Θ,

supθ∈Θ |lt(θ)| ≤ l̃t, and E(|l̃t|q) ≤ C for some integer q > max{K+1, 4}, where

C <∞ is a constant. For any c > 0, we have

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{lt(θ)− E[lt(θ)]}

∣∣∣∣∣ ≤ c

)
= 1− o(T−1). (B.1)

Proof. Letting Lt(θ) = lt(θ) − E[lt(θ)], we denote 1t = 1{|lt(θ) − E[lt(θ)]| ≤
√
T} = 1{|Lt(θ)| ≤

√
T} and 1̄t = 1− 1t. Since E[Lt(θ)] = 0, we have

Lt(θ) = Lt(θ)1t − E[Lt(θ)1t] + Lt(θ)1̄t − E[Lt(θ)1̄t]. (B.2)
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Then, it suffices to show that for any constants c1 > 0 and c2 > 0,

TP

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)
= o(1), (B.3)

TP

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

Lt(θ)1̄t

∣∣∣∣∣ > c2

)
= o(1), (B.4)

sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

E[Lt(θ)1̄t]

∣∣∣∣∣ = o(1). (B.5)

First, we show (B.5). By assumption, a positive constant C exists such that

E[Lt(θ)
2] = E[lt(θ)

2]− E[lt(θ)]
2 ≤ E[l̃2t ] < C. Then, by the H�lder inequality,

sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

E[Lt(θ)1̄t]

∣∣∣∣∣ ≤ 1

T

τ∑
t=1

sup
θ∈Θ

|E[Lt(θ)1̄t]|

≤ 1

T

τ∑
t=1

sup
θ∈Θ

∣∣∣E[Lt(θ)
2]1/2E(1̄t)

1/2
∣∣∣

≤ C1/2

T

τ∑
t=1

sup
θ∈Θ

∣∣∣E(1̄t)
1/2
∣∣∣

=
C1/2

T

τ∑
t=1

sup
θ∈Θ

∣∣∣∣P (|Lt(θ)| >
√
T
)1/2∣∣∣∣

≤ C1/2

T

τ∑
t=1

sup
θ∈Θ

∣∣∣∣∣
(
E[Lt(θ)

2]

T

)1/2
∣∣∣∣∣

≤ C1/2

T
√
T

τ∑
t=1

sup
θ∈Θ

∣∣∣E[Lt(θ)
2]1/2

∣∣∣
≤ Cτ

T
√
T

= O(T−1/2). (B.6)

Second, we show (B.4). By assumption, it holds that supθ∈Θ |Lt(θ)| =

supθ∈Θ |lt(θ)− E[lt(θ)]| ≤ supθ∈Θ |lt(θ)| + supθ∈ΘE[|lt(θ)|] ≤ l̃t + E(l̃t). Note

that, by the definition of 1̄t = 1{|Lt(θ)| >
√
T},

∣∣ 1
T

∑τ
t=1 Lt(θ)1̄t

∣∣ > c2 implies
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that max1≤t≤τ supθ∈Θ |Lt(θ)| >
√
T . Thus,

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

Lt(θ)1̄t

∣∣∣∣∣ > c2

)
≤ P

(
max
1≤t≤τ

sup
θ∈Θ

|Lt(θ)| >
√
T

)
≤ τ max

1≤t≤τ
P
(
l̃t + E(l̃t) >

√
T
)

≤
τ max1≤t≤τ E

[∣∣∣l̃t + E(l̃t)
∣∣∣q]

T q/2

= O(T 1−q/2) = o(T−1). (B.7)

Third, we show (B.3). Since Θ is assumed to be compact, subsets Θj ⊂ Θ

exist for j = 1, . . . , nϵ such that Θ ⊂ ∪nϵ
j=1Θj and ‖θ − θ̄‖ ≤ ϵ/T for any ϵ > 0

and θ, θ̄ ∈ Θj , where nϵ = O(TK).

By the Boole inequality, we obtain

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)

≤
nϵ∑
j=1

P

(
sup
θ∈Θj

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)
. (B.8)

When θ ∈ Θj , it holds by assumption that, for any θ̄ ∈ Θj , |Lt(θ) − Lt(θ̄)| =

|lt(θ)− lt(θ̄) + E[lt(θ̄)− lt(θ)]| ≤ ‖θ − θ̄‖[l̃t + E(l̃t)]. Then,

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

τ∑
t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

∣∣∣∣∣ 1T
τ∑

t=1

{
Lt(θ)1t − E[Lt(θ)1t]− Lt(θ̄)1t + E[Lt(θ̄)1t]

}∣∣∣∣∣
≤

∣∣∣∣∣ 1T
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

1

T

τ∑
t=1

∣∣Lt(θ)− Lt(θ̄)
∣∣1t +

1

T

τ∑
t=1

E
[∣∣Lt(θ̄)− Lt(θ)

∣∣1t

]
,

(B.9)
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where the second and third terms of the right hand side are

1

T

τ∑
t=1

∣∣Lt(θ)− Lt(θ̄)
∣∣1t +

1

T

τ∑
t=1

E
[∣∣Lt(θ̄)− Lt(θ)

∣∣1t

]
≤ 1

T

τ∑
t=1

∥∥θ − θ̄
∥∥ [l̃t + E(l̃t)]1t +

1

T

τ∑
t=1

∥∥θ − θ̄
∥∥E{[l̃t + E(l̃t)]1t}

=
1

T

τ∑
t=1

∥∥θ − θ̄
∥∥([l̃t + E(l̃t)]1t + E{[l̃t + E(l̃t)]1t}

)
≤ ϵ

T 2

τ∑
t=1

L̃t, (B.10)

where L̃t ≡ [l̃t+E(l̃t)]1t+E{[l̃t+E(l̃t)]1t}. Equations (B.9) and (B.10) indicate

that

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

τ∑
t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

ϵ

T 2

τ∑
t=1

[L̃t − E(L̃t)] +
ϵ

T 2

τ∑
t=1

E(L̃t), (B.11)

where E(L̃t) = 2E{[l̃t + E(l̃t)]1t} < ∞ by assumption. Then, equations (B.8)

and (B.11) imply that

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)
≤ nϵP

(∣∣∣∣∣ 3T
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > c1

)

+ nϵP

(∣∣∣∣∣ 3ϵT 2

τ∑
t=1

[L̃t − E(L̃t)]

∣∣∣∣∣ > c1

)
,

(B.12)

since P (| ϵ
T 2

∑τ
t=1E(L̃t)| > c1) = 0 by choosing ϵ small enough. Thus, it suffices
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to show that

nϵP

(∣∣∣∣∣ 1T
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > c1

)
= o(T−1), (B.13)

nϵP

(∣∣∣∣∣ ϵT 2

τ∑
t=1

[L̃t − E(L̃t)]

∣∣∣∣∣ > c1

)
= o(T−1). (B.14)

First, we show (B.13). abcNote that Lt(θ̄) is a measurable function of the strong

mixing process with the mixing coefficient satisfying α(τ) ≤ cαρ
τ for some cα >

0 and 0 < ρ < 1. Moreover, we have sup1≤t≤τ |Lt(θ̄)1t − E[Lt(θ̄)1t]| ≤ 2
√
T .

Thus, applying Theorem 2 in Merlevède et al., 2009 (see also Lemma S1.1 in Su

et al., 2016) yields

TnϵP

(∣∣∣∣∣
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > c1T

)

≤ Tnϵ exp

(
− C0c

2
1T

2

v20T + 4T + c1T
√
T [log(T )]2

)

= exp

(
− C0c

2
1T

v20 + 4 + c1
√
T [log(T )]2

+K log(T ) + log(T )

)
(B.15)

for some constant C0 and vo.1 Since the right hand side of the above equation

converges zero as T → ∞, (B.13) holds.

Next, we show (B.14). By the Markov and H�lder inequalities,

nϵP

(∣∣∣∣∣ ϵT 2

τ∑
t=1

[L̃t − E(L̃t)]

∣∣∣∣∣ > c1

)
≤ nϵ

ϵqE
[∣∣∣ 1T ∑τ

t=1[L̃t − E(L̃t)]
∣∣∣q]

cq1T
q

≤ nϵ
ϵq 1

T

∑τ
t=1E

[∣∣∣L̃t − E(L̃t)
∣∣∣q]

cq1T
q

= O(TK−q), (B.16)

where the right hand side is o(T−1) since K + 1 < q.
1Let Lt ≡ Lt(θ̄)1t − E[Lt(θ̄)1t]. Then, vo ≡ supt≥1[Var(Lt) + 2

∑∞
s=t+1 Cov(Lt, Ls)].
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Lemma 14. Let the parameter space Θ be a compact and convex subset of RK .

For all θ ∈ Θ, lt(θ) is a measurable function of a strong mixing process with

mixing coefficients α(·), where α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1. A

measurable function l̃t exists such that |lt(θ)− lt(θ̄)| ≤ ‖θ− θ̄‖l̃t for any θ, θ̄ ∈ Θ,

supθ∈Θ |lt(θ)| ≤ l̃t, and E(|l̃t|q) ≤ C for some integer q > max{K+a, 4}, where

C <∞ is a constant. For any c > 0, we have

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

{lt(θ)− E[lt(θ)]}

∣∣∣∣∣ ≤ c

)
= 1− o(T−1). (B.17)

Proof. Letting Lt(θ) = lt(θ) − E[lt(θ)], we denote 1t = 1{|lt(θ) − E[lt(θ)]| ≤
√
T} = 1{|Lt(θ)| ≤

√
T} and 1̄t = 1− 1t. Since E[Lt(θ)] = 0, we have

Lt(θ) = Lt(θ)1t − E[Lt(θ)1t] + Lt(θ)1̄t − E[Lt(θ)1̄t]. (B.18)

Then, it suffices to show that for any constants c1 > 0 and c2 > 0,

TP

(
sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)
= o(1), (B.19)

TP

(
sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

Lt(θ)1̄t

∣∣∣∣∣ > c2

)
= o(1), (B.20)

sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

E[Lt(θ)1̄t]

∣∣∣∣∣ = o(1). (B.21)

First, we show (B.21). By assumption, a positive constant C exists such that
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E[Lt(θ)
2] = E[lt(θ)

2]− E[lt(θ)]
2 ≤ E[l̃2t ] < C. Then, by the H�lder inequality,

sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

E[Lt(θ)1̄t]

∣∣∣∣∣ ≤ 1

T

T∑
t=τ+1

sup
θ∈Θ

|E[Lt(θ)1̄t]|

≤ 1

T

T∑
t=τ+1

sup
θ∈Θ

∣∣∣E[Lt(θ)
2]1/2E(1̄t)

1/2
∣∣∣

≤ C1/2

T

T∑
t=τ+1

sup
θ∈Θ

∣∣∣E(1̄t)
1/2
∣∣∣

=
C1/2

T

T∑
t=τ+1

sup
θ∈Θ

∣∣∣∣P (|Lt(θ)| >
√
T
)1/2∣∣∣∣

≤ C1/2

T

T∑
t=τ+1

sup
θ∈Θ

∣∣∣∣∣
(
E[Lt(θ)

2]

T

)1/2
∣∣∣∣∣

≤ C1/2

T
√
T

T∑
t=τ+1

sup
θ∈Θ

∣∣∣E[Lt(θ)
2]1/2

∣∣∣
≤ C(T − τ)

T
√
T

= O(T a−3/2) = o(1). (B.22)

Second, we show (B.20). By assumption, we obtain

sup
θ∈Θ

|Lt(θ)| = sup
θ∈Θ

|lt(θ)− E[lt(θ)]| ≤ sup
θ∈Θ

|lt(θ)|+ sup
θ∈Θ

E[|lt(θ)|] ≤ l̃t + E(l̃t).

Derivations similar with (B.7) yield

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

Lt(θ)1̄t

∣∣∣∣∣ > c2

)
≤ T a max

τ+1≤t≤T
P

(
sup
θ∈Θ

|Lt(θ)| >
√
T

)

≤
T a maxτ+1≤t≤T E

[∣∣∣l̃t + E(l̃t)
∣∣∣q]

T q/2

= O(T a−q/2) = o(T−1). (B.23)

Third, we show (B.19). Since Θ is assumed to be compact, subsets Θj ⊂ Θ

exist for j = 1, . . . , nϵ such that Θ ⊂ ∪nϵ
j Θj and ‖θ − θ̄‖ ≤ ϵ/T for any ϵ > 0

and θ, θ̄ ∈ Θj , where nϵ = O(TK).
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By the Boole inequality, we obtain

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)

≤
nϵ∑
j=1

P

(
sup
θ∈Θj

∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)
. (B.24)

When θ ∈ Θj , it holds by assumption that, for any θ̄ ∈ Θj ,

|Lt(θ)− Lt(θ̄)| = |lt(θ)− lt(θ̄) + E[lt(θ̄)− lt(θ)]| ≤ ‖θ − θ̄‖[l̃t + E(l̃t)].

Then,

∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣
≤

∣∣∣∣∣ 1T
T∑

t=τ+1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

∣∣∣∣∣ 1T
T∑

t=τ+1

{
Lt(θ)1t − E[Lt(θ)1t]− Lt(θ̄)1t + E[Lt(θ̄)1t]

}∣∣∣∣∣
≤

∣∣∣∣∣ 1T
T∑

t=τ+1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

1

T

T∑
t=τ+1

∣∣Lt(θ)− Lt(θ̄)
∣∣1t +

1

T

T∑
t=τ+1

E
[∣∣Lt(θ̄)− Lt(θ)

∣∣1t

]
, (B.25)
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where the second and third terms of the right hand side are

1

T

T∑
t=τ+1

∣∣Lt(θ)− Lt(θ̄)
∣∣1t +

1

T

T∑
t=τ+1

E
[∣∣Lt(θ̄)− Lt(θ)

∣∣1t

]
≤ 1

T

T∑
t=τ+1

∥∥θ − θ̄
∥∥ [l̃t + E(l̃t)]1t +

1

T

T∑
t=τ+1

∥∥θ − θ̄
∥∥E{[l̃t + E(l̃t)]1t}

=
1

T

T∑
t=τ+1

∥∥θ − θ̄
∥∥([l̃t + E(l̃t)]1t + E{[l̃t + E(l̃t)]1t}

)

≤ ϵ

T 2

T∑
t=τ+1

L̃t, (B.26)

where L̃t ≡ [l̃t + E(l̃t)]1t + E{[l̃t + E(l̃t)]1t}. Equations (B.25) and (B.26)

indicate that

∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

T∑
t=τ+1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

ϵ

T 2

T∑
t=τ+1

[L̃t − E(L̃t)] +
ϵ

T 2

T∑
t=τ+1

E(L̃t),

(B.27)

where E(L̃t) = 2E{[l̃t +E(l̃t)]1t} <∞ by assumption. Then, equations (B.24)

and (B.27) imply that

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > c1

)

≤ nϵP

(∣∣∣∣∣ 3T
T∑

t=τ+1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > c1

)

+ nϵP

(∣∣∣∣∣ 3ϵT 2

T∑
t=τ+1

[L̃t − E(L̃t)]

∣∣∣∣∣ > c1

)
, (B.28)

since P (| ϵ
T 2

∑T
t=τ+1E(L̃t)| > c1) = 0 by choosing ϵ small enough. Thus, it
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suffices to show that

nϵP

(∣∣∣∣∣ 1T
T∑

t=τ+1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > c1

)
= o(T−1), (B.29)

nϵP

(∣∣∣∣∣ ϵT 2

T∑
t=τ+1

[L̃t − E(L̃t)]

∣∣∣∣∣ > c1

)
= o(T−1). (B.30)

First, we show (B.29). Note that Lt(θ̄) is a measurable function of the strong

mixing process with the mixing coefficient satisfying α(τ) ≤ cαρ
τ for some cα >

0 and 0 < ρ < 1. Moreover, we have supτ+1≤t≤T |Lt(θ̄)1t −E[Lt(θ̄)1t]| ≤ 2
√
T .

Thus, applying Theorem 2 in Merlevède et al. (2009) (see also Lemma S1.1 in

Su et al., 2016) yields

TnϵP

(∣∣∣∣∣
T∑

t=τ+1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > c1T

)

≤ Tnϵ exp

(
− C0c

2
1T

2

v20(T − τ) + 4T + c1T
√
T [log(T − τ)]2

)

= exp

(
− C0c

2
1T

2

v20T
a + 4T + c1T

√
T [log(T a)]2

+K log(T ) + log(T )

)
(B.31)

for some constant C0 and vo.2 Since the right hand side of the above equation

converges zero as T → ∞, (B.29) holds.

Next, we show (B.30). By the Markov and H�lder inequalities,

nϵP

(∣∣∣∣∣ ϵT 2

T∑
t=τ+1

[L̃t − E(L̃t)]

∣∣∣∣∣ > c1

)
≤ nϵ

ϵqE
[∣∣∣ 1T ∑T

t=τ+1[L̃t − E(L̃t)]
∣∣∣q]

cq1T
q

≤ nϵ
ϵq 1

T

∑T
t=τ+1E

[∣∣∣L̃t − E(L̃t)
∣∣∣q]

cq1T
q

= O(T a−1+K−q), (B.32)

2Let Lt ≡ Lt(θ̄)1t − E[Lt(θ̄)1t]. Then, vo ≡ supt≥1[Var(Lt) + 2
∑∞

s=t+1 Cov(Lt, Ls)].
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where the right hand side is o(T−1) since K + a < q.

Lemma 15. Let ft be a measurable function of a strong mixing process with

mixing coefficients α(·), where α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1,

and E|ft|q ≤ C for some integer q > 4 and C <∞. For any c > 0, we have

P

(
1

T

τ∑
t=1

[ft − E(ft)] ≤ c

)
= 1− o(T−1). (B.33)

Proof. Letting Lt = ft−E(ft), we denote 1t = 1{|ft−E(ft)| ≤
√
T} = 1{|Lt| ≤

√
T} and 1̄t = 1− 1t. Since E(Lt) = 0, we have

Lt = Lt1t − E(Lt1t) + Lt1̄t − E(Lt1̄t). (B.34)

Then, it suffices to show that for any constants c1 > 0 and c2 > 0,

TP

(∣∣∣∣∣ 1T
τ∑

t=1

{Lt1t − E(Lt1t)}

∣∣∣∣∣ > c1

)
= o(1), (B.35)

TP

(∣∣∣∣∣ 1T
τ∑

t=1

Lt1̄t

∣∣∣∣∣ > c2

)
= o(1), (B.36)∣∣∣∣∣ 1T

τ∑
t=1

E(Lt1̄t)

∣∣∣∣∣ = o(1). (B.37)

First, we show (B.37). By assumption, a positive constant C exists such that
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E[L2
t ] = E[f2t ]− E[ft]

2 ≤ E[f2t ] < C. Then, by the H�lder inequality,

∣∣∣∣∣ 1T
τ∑

t=1

E(Lt1̄t)

∣∣∣∣∣ ≤ 1

T

τ∑
t=1

|E(Lt1̄t)|

≤ 1

T

τ∑
t=1

∣∣∣E[L2
t ]

1/2E(1̄t)
1/2
∣∣∣

≤ C1/2

T

τ∑
t=1

∣∣∣E(1̄t)
1/2
∣∣∣

=
C1/2

T

τ∑
t=1

∣∣∣∣P (|Lt| >
√
T
)1/2∣∣∣∣

≤ C1/2

T

τ∑
t=1

∣∣∣∣∣
(
E[L2

t ]

T

)1/2
∣∣∣∣∣

≤ C1/2

T
√
T

τ∑
t=1

∣∣∣E[L2
t ]

1/2
∣∣∣

≤ Cτ

T
√
T

= O(T−1/2). (B.38)

Second, we show (B.36). Note that, by the assumption, a constant C exists

such that E(|Lt|q) = E[|ft − E(ft)|q] < C. Derivations similar with (B.7) yield

P

(∣∣∣∣∣ 1T
τ∑

t=1

Lt1̄t

∣∣∣∣∣ > c2

)
≤ τ max

1≤t≤τ
P
(
|Lt| >

√
T
)

≤ τ max1≤t≤τ E [|ft − E(ft)|q]
T q/2

= O(T 1−q/2) = o(T−1). (B.39)

Third, we show (B.35). Note that Lt is a measurable function of the strong

mixing process with the mixing coefficient satisfying α(τ) ≤ cαρ
τ for some

cα > 0 and 0 < ρ < 1. Moreover, we have sup1≤t≤τ |Lt1t − E(Lt1t)| ≤ 2
√
T .

Thus, applying Theorem 2 in Merlevède et al. (2009) (see also Lemma S1.1 in
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Su et al., 2016) yields

TP

(∣∣∣∣∣
τ∑

t=1

{Lt1t − E(Lt1t)}

∣∣∣∣∣ > c1T

)
≤ T exp

(
− C0c

2
1T

2

v20T + 4T + c1T
√
T [log(T )]2

)

= exp

(
− C0c

2
1T

v20 + 4 + c1
√
T [log(T )]2

+ log(T )

)
(B.40)

for some constant C0 and vo.3 Since the right hand side of the above equation

converges zero as T → ∞, (B.35) holds.

Lemma 16. Let ft be a measurable function of a strong mixing process with

mixing coefficients α(·), where α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1,

and E|ft|q ≤ C for some integer q > 4 and C <∞. For any c > 0, we have

P

(
1

T

T∑
t=τ+1

[ft − E(ft)] ≤ c

)
= 1− o(T−1). (B.41)

Proof. Letting Lt = ft−E(ft), we denote 1t = 1{|ft−E(ft)| ≤
√
T} = 1{|Lt| ≤

√
T} and 1̄t = 1− 1t. Since E(Lt) = 0, we have

Lt = Lt1t − E(Lt1t) + Lt1̄t − E(Lt1̄t). (B.42)

Then, it suffices to show that for any constants c1 > 0 and c2 > 0,

TP

(∣∣∣∣∣ 1T
T∑

t=τ+1

{Lt1t − E(Lt1t)}

∣∣∣∣∣ > c1

)
= o(1), (B.43)

TP

(∣∣∣∣∣ 1T
T∑

t=τ+1

Lt1̄t

∣∣∣∣∣ > c2

)
= o(1), (B.44)∣∣∣∣∣ 1T

T∑
t=τ+1

E(Lt1̄t)

∣∣∣∣∣ = o(1). (B.45)

3Let L̄t ≡ Lt1t − E(Lt1t). Then, vo ≡ supt≥1[Var(L̄t) + 2
∑∞

s=t+1 Cov(L̄t, L̄s)].
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First, we show (B.45). By assumption, a positive constant C exists such

that E[L2
t ] = E[f2t ]− E[ft]

2 ≤ E[f2t ] < C. Then, by the H�lder inequality,

∣∣∣∣∣ 1T
T∑

t=τ+1

E(Lt1̄t)

∣∣∣∣∣ ≤ 1

T

T∑
t=τ+1

|E(Lt1̄t)|

≤ 1

T

T∑
t=τ+1

∣∣∣E[L2
t ]

1/2E(1̄t)
1/2
∣∣∣

≤ C1/2

T

T∑
t=τ+1

∣∣∣E(1̄t)
1/2
∣∣∣

=
C1/2

T

T∑
t=τ+1

∣∣∣∣P (|Lt| >
√
T
)1/2∣∣∣∣

≤ C1/2

T

T∑
t=τ+1

∣∣∣∣∣
(
E[L2

t ]

T

)1/2
∣∣∣∣∣

≤ C1/2

T
√
T

T∑
t=τ+1

∣∣∣E[L2
t ]

1/2
∣∣∣

≤ CT a−3/2 = O(T a−3/2). (B.46)

Second, we show (B.44). Note that, by the assumption, a constant C exists

such that E(|Lt|q) = E[|ft − E(ft)|q] < C. Derivations similar with (B.7) yield

P

(∣∣∣∣∣ 1T
T∑

t=τ+1

Lt1̄t

∣∣∣∣∣ > c2

)
≤ T a max

τ+1≤t≤T
P
(
|Lt| >

√
T
)

≤ T a maxτ+1≤t≤T E [|ft − E(ft)|q]
T q/2

= O(T a−q/2) = o(T−1). (B.47)

Third, we show (B.43). Note that Lt is a measurable function of the strong

mixing process with the mixing coefficient satisfying α(τ) ≤ cαρ
τ for some

cα > 0 and 0 < ρ < 1. Moreover, we have sup1≤t≤τ |Lt1t − E(Lt1t)| ≤ 2
√
T .

Thus, applying Theorem 2 in Merlevède et al. (2009) (see also Lemma S1.1 in
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Su et al., 2016) yields

TP

(∣∣∣∣∣
T∑

t=τ+1

{Lt1t − E(Lt1t)}

∣∣∣∣∣ > c1T

)

≤T exp

(
− C0c

2
1T

2

v20(T − τ) + 4T + c1T
√
T [log(T − τ)]2

)
(B.48)

=exp

(
− C0c

2
1T

v20T
a−1 + 4 + c1

√
T [a log(T )]2

+ log(T )

)
(B.49)

for some constant C0 and vo.4 Since the right hand side of the above equation

converges zero as T → ∞, (B.43) holds.

Lemma 17. Let the parameter space Θ be a compact and convex subset of RK .

For all θ ∈ Θ, lt(θ) is a measurable function of a strong mixing process with

mixing coefficients α(·), where α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1. A

measurable function l̃t exists such that |lt(θ)− lt(θ̄)| ≤ ‖θ− θ̄‖l̃t for any θ, θ̄ ∈ Θ,

supθ∈Θ |lt(θ)| ≤ l̃t, and E(|l̃t|q) ≤ C for some integer q > max{K, 2}, where

C < ∞ is a constant. For any T ≥ 2 and arbitrary small ϵS > 0, a constant S

exists such that

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{lt(θ)− E[lt(θ)]}

∣∣∣∣∣ ≥ S

)
≤ ϵS . (B.50)

Proof. Letting Lt(θ) = lt(θ) − E[lt(θ)], we denote 1t = 1{|lt(θ) − E[lt(θ)]| ≤
√
ST} = 1{|Lt(θ)| ≤

√
ST} and 1̄t = 1− 1t. Since E[Lt(θ)] = 0, we have

Lt(θ) = Lt(θ)1t − E[Lt(θ)1t] + Lt(θ)1̄t − E[Lt(θ)1̄t]. (B.51)

4Let L̄t ≡ Lt1t − E(Lt1t). Then, vo ≡ supt≥1[Var(L̄t) + 2
∑∞

s=t+1 Cov(L̄t, L̄s)].
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Then, we obtain

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

Lt(θ)

∣∣∣∣∣ ≥ S

)
≤ P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ ≥ S/3

)

+ P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

Lt(θ)1̄t

∣∣∣∣∣ ≥ S/3

)

+ P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

E[Lt(θ)1̄t]

∣∣∣∣∣ ≥ S/3

)
(B.52)

By assumptions, it holds that

sup
θ∈Θ

|Lt(θ)| = sup
θ∈Θ

|lt(θ)− E[lt(θ)]| ≤ sup
θ∈Θ

|lt(θ)|+ sup
θ∈Θ

E[|lt(θ)|] ≤ l̃t + E(l̃t).

Thus, a constant C exists such that

ct ≡ E[(sup
θ∈Θ

|Lt(θ)|)q] ≤ E[|l̃t + E(l̃t)|q] ≡ c̃t ≤ C. (B.53)

First, with respect to the third term of equation (B.52), it holds, by the

H�lder and Chebyshev inequalities, that

sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

E[Lt(θ)1̄t]

∣∣∣∣∣ ≤ 1

T

τ∑
t=1

sup
θ∈Θ

|E[Lt(θ)1̄t]|

≤ τ

T
max
1≤t≤τ

sup
θ∈Θ

∣∣∣E[Lt(θ)
q]1/qE(1̄t)

1/q
∣∣∣

≤ τ

T
max
1≤t≤τ

c
1/q
t max

1≤t≤τ
sup
θ∈Θ

∣∣∣E(1̄t)
1/q
∣∣∣

≤ τ

T
max
1≤t≤τ

c
1/q
t max

1≤t≤τ

∣∣∣∣∣P
(
sup
θ∈Θ

|Lt(θ)| >
√
ST

)1/q
∣∣∣∣∣

≤ τ

T
max
1≤t≤τ

c
1/q
t max

1≤t≤τ

{
E{[supθ∈Θ |Lt(θ)|]q}

(ST )q/2

}1/q

=
τ

T
√
ST

max
1≤t≤τ

c
2/q
t . (B.54)

Thus, when S3/2 > 3τ
T
√
T
max1≤t≤τ c

2/q
t , the probability in the third term of
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equation (B.52) is zero.

Second, we consider an upper bound of the second term of equation (B.52).

Note that, by the definition of 1̄t = 1{|Lt(θ)| >
√
ST},

∣∣ 1
T

∑τ
t=1 Lt(θ)1̄t

∣∣ > S/3

implies that max1≤t≤τ supθ∈Θ |Lt(θ)| >
√
ST . Thus, by Boole and Markov

inequalities,

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

Lt(θ)1̄t

∣∣∣∣∣ > S/3

)
≤ P

(
max
1≤t≤τ

sup
θ∈Θ

|Lt(θ)| >
√
ST

)
≤ τ max

1≤t≤τ
P

(
sup
θ∈Θ

|Lt(θ)| >
√
ST

)
≤
τ max1≤t≤τ E {[supθ∈Θ |Lt(θ)|]q}

(ST )q/2

=
τ

(ST )q/2
max
1≤t≤τ

ct (B.55)

Third, we consider an upper bound of the first term of equation (B.52). Since

Θ is assumed to be compact, subsets Θj ⊂ Θ exist for j = 1, . . . , nϵ such that

Θ ⊂ ∪nϵ
j=1Θj and ‖θ− θ̄‖ ≤ ϵ/T for any ϵ > 0 and θ, θ̄ ∈ Θj , where nϵ = O(TK).

By the Cauchy–Schwartz inequality, we have

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣
≤

∣∣∣∣∣ 1T
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

∣∣∣∣∣ 1T
τ∑

t=1

{
Lt(θ)1t − E[Lt(θ)1t]− Lt(θ̄)1t + E[Lt(θ̄)1t]

}∣∣∣∣∣
≤

∣∣∣∣∣ 1T
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

1

T

τ∑
t=1

∣∣Lt(θ)− Lt(θ̄)
∣∣1t +

1

T

τ∑
t=1

E
[∣∣Lt(θ̄)− Lt(θ)

∣∣1t

]
. (B.56)

Since l̃t exists, by assumption, such that |Lt(θ)−Lt(θ̄)| = |lt(θ)−lt(θ̄)+E[lt(θ̄)−
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lt(θ)]| ≤ ‖θ − θ̄‖[l̃t + E(l̃t)], we obtain

1

T

τ∑
t=1

∣∣Lt(θ)− Lt(θ̄)
∣∣1t +

1

T

τ∑
t=1

E
[∣∣Lt(θ̄)− Lt(θ)

∣∣1t

]
≤ 1

T

τ∑
t=1

∥∥θ − θ̄
∥∥ [l̃t + E(l̃t)]1t +

1

T

τ∑
t=1

∥∥θ − θ̄
∥∥E{[l̃t + E(l̃t)]1t}

=
1

T

τ∑
t=1

∥∥θ − θ̄
∥∥([l̃t + E(l̃t)]1t + E{[l̃t + E(l̃t)]1t}

)
≤ ϵ

T 2

τ∑
t=1

L̃t, (B.57)

where L̃t ≡ [l̃t+E(l̃t)]1t+E{[l̃t+E(l̃t)]1t}. Then, equations (B.56) and (B.57)

indicate that

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

τ∑
t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣
+

ϵ

T 2

τ∑
t=1

[L̃t − E(L̃t)] +
ϵ

T 2

τ∑
t=1

E(L̃t), (B.58)

Equation (B.58) and the Boole inequality yield

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > S/3

)

≤
nϵ∑
j=1

P

(
sup
θ∈Θj

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > S/3

)
.

≤nϵP

(∣∣∣∣∣ 3T
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > S/3

)

+ nϵP

(∣∣∣∣∣ 3ϵT 2

τ∑
t=1

[L̃t − E(L̃t)]

∣∣∣∣∣ > S/3

)

+ nϵP

(∣∣∣∣∣ 3ϵT 2

τ∑
t=1

E(L̃t)

∣∣∣∣∣ > S/3

)
(B.59)

With respect to the third term of the right hand side, it is able to select

ϵ small enough such that P (| 3ϵT 2

∑τ
t=1E(L̃t)| > c1) = 0, because E(L̃t) =

131



2E{[l̃t+E(l̃t)]1t} is assumed to be bounded above by a constant. With respect

to the first term, Lt(θ̄) is a measurable function of the strong mixing process with

the mixing coefficient satisfying α(τ) ≤ cαρ
τ for some cα > 0 and 0 < ρ < 1.

Moreover, since 1t = 1{|Lt(θ)| ≤
√
ST}, it holds that sup1≤t≤τ |Lt(θ̄)1t −

E[Lt(θ̄)1t]| ≤ 2
√
ST . Thus, applying Theorem 2 in Merlevède et al. (2009) (see

also Lemma S1.1 in Su et al. 2016) yields

nϵP

(∣∣∣∣∣
τ∑

t=1

{
Lt(θ̄)1t − E[Lt(θ̄)1t]

}∣∣∣∣∣ > TS/9

)

≤ nϵ exp

(
− C0S

2T

v20 + 4
√
S + (2/9)S

√
ST [log(T )]2

)
(B.60)

for any T ≥ 2 and any S and some constants C0 and vo.5

With respect to the second term, it holds that L̃t −E(L̃t) = [l̃t +E(l̃t)]1t −

E{[l̃t + E(l̃t)]1t} ≤ l̃t + E(l̃t), since l̃t ≥ 0. Then, the Markov and H�lder

inequalities yield

nϵP

(∣∣∣∣∣ ϵT 2

τ∑
t=1

[L̃t − E(L̃t)]

∣∣∣∣∣ > S/9

)
≤ 32qnϵϵ

q

SqT q
E

[∣∣∣∣∣ 1T
τ∑

t=1

[L̃t − E(L̃t)]

∣∣∣∣∣
q]

≤ 32qnϵϵ
q

SqT q

1

T

τ∑
t=1

E
[∣∣∣l̃t + E(l̃t)

∣∣∣q]
≤ 32qnϵϵ

q

SqT q

τ

T
max
1≤t≤τ

c̃t. (B.61)

Therefore, we obtain

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

{Lt(θ)1t − E[Lt(θ)1t]}

∣∣∣∣∣ > S/3

)

≤ nϵ exp

(
− C0S

2T

v20 + 4
√
S + (2/9)S

√
ST [log(T )]2

)
+

32qnϵϵ
q

SqT q

τ

T
max
1≤t≤τ

c̃t. (B.62)

5Let Lt ≡ Lt(θ̄)1t − E[Lt(θ̄)1t]. Then, vo ≡ supt≥1[Var(Lt) + 2
∑∞

s=t+1 Cov(Lt, Ls)].
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Equations (B.52), (B.54), (B.55), and (B.62) indicate that for

S >

(
3τ

T
√
T

max
1≤t≤τ

c
2/q
t

)3/2

,

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

Lt(θ)

∣∣∣∣∣ ≥ S

)

≤ nϵ exp

(
− C0S

2T

v20 + 4
√
S + (2/9)S

√
ST [log(T )]2

)
+

32qnϵϵ
q

SqT q

τ

T
max
1≤t≤τ

c̃t +
τ

(ST )q/2
max
1≤t≤τ

ct

≡ ϵS , (B.63)

where ϵS is bounded above uniformly in T when q > max{K, 2}. Since ϵS is a

decreasing function of S, ϵS can be as small as possible by taking S large.

Lemma 18. Let Assumptions 1, 2, and 3 hold. For any T ≥ 2 and arbitrary

small ϵS > 0, a positive constant S exists such that

P (‖∇θQT (θ̂)‖ > S) ≤ ϵS . (B.64)
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Proof. Since

‖∇θQT (θ̂)‖2 =

K∑
k=1

|∇θkQT (θ̂)|2

≤K max
1≤k≤K

|∇θkQT (θ̂)|2

=K max
1≤k≤K

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θ̂I1) +
1

T

T∑
t=τ+1

∇θk lI2,t(θ̂I2)

∣∣∣∣∣
2

≤K max
1≤k≤K

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θ̂I1)

∣∣∣∣∣
2

+K max
1≤k≤K

∣∣∣∣∣ 1T
T∑

t=τ+1

∇θk lI2,t(θ̂I2)

∣∣∣∣∣
2

+ 2K max
1≤k≤K

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θ̂I1)
1

T

T∑
t=τ+1

∇θk lI2,t(θ̂I2)

∣∣∣∣∣ , (B.65)

we obtain that

P (‖∇θQT (θ̂)‖ > S) = P (‖∇θQT (θ̂)‖2 > S2)

≤ P

 max
1≤k≤K

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θ̂I1)

∣∣∣∣∣
2

>
S2

3K


+ P

 max
1≤k≤K

∣∣∣∣∣ 1T
T∑

t=τ+1

∇θk lI2,t(θ̂I2)

∣∣∣∣∣
2

>
S2

3K


+ P

(
2 max
1≤k≤K

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θ̂I1)
1

T

T∑
t=τ+1

∇θk lI2,t(θ̂I2)

∣∣∣∣∣ > S2

3K

)
. (B.66)

Then, it suffices to show that, for any T ≥ 2 and arbitrary small ϵ1, ϵ2, ϵ3 > 0,
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a positive constants S1, S2, S3 exist such that

P

(
sup

θI1∈ΘI1

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θI1)

∣∣∣∣∣ > S1

)
≤ ϵ1 (B.67)

P

(
sup

θI2∈ΘI2

∣∣∣∣∣ 1T
T∑

t=τ+1

∇θk lI2,t(θI2)

∣∣∣∣∣ > S2

)
≤ ϵ2 (B.68)

P

(
sup
θ∈Θ

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θI1)
1

T

T∑
t=τ+1

∇θk lI2,t(θI2)

∣∣∣∣∣ > S3

)
≤ ϵ3, (B.69)

for all k = 1, . . . ,K. We consider the cases in which θk ∈ ΘI1 ∩ ΘI2 because

otherwise the above probabilities can be zero. Furthermore, it suffices to show

(B.67) and (B.68), since then the existence of S3 in (B.69) is implied.

First, let us consider (B.67). It holds that supθI1∈ΘI1

∣∣ 1
T

∑τ
t=1E[∇θk lI1,t(θI1)]

∣∣ ≤
τ
T cl by Assumption 3 (2). Then, we obtain

P

(
sup

θI1∈ΘI1

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θI1)

∣∣∣∣∣ > S1

)

≤ P

(
sup

θI1∈ΘI1

∣∣∣∣∣ 1T
τ∑

t=1

{∇θk lI1,t(θI1)− E[∇θk lI1,t(θI1)]}

∣∣∣∣∣ > S1 −
τ

T
cl

)
. (B.70)

Under Assumptions 1, 2, and 3, we can apply Lemma 17 to the right hand

side of the above equation, where S in Lemma 17 is S1 − τ
T cl. Let ct,1 ≡

E[(supθI1∈ΘI1
|∇θk lI1,t(θI1)− E[∇θk lI1,t(θI1)]|)q], which is, by Assumption 3

(2), bounded above by a constant. Then, for any S1 >
(

3τ
T
√
T
max1≤t≤τ c

2/q
t,1

)3/2
+

τ
T cl, we obtain

P

(
sup

θI1∈ΘI1

∣∣∣∣∣ 1T
τ∑

t=1

∇θk lI1,t(θI1)

∣∣∣∣∣ > S1

)
≤ ϵS1 , (B.71)

where ϵS1
is bounded above uniformly in T when q > max{K1, 2}, independent

of k, and a decreasing function of S1. Thus, ϵS1
can be as small as possible by

taking S1 large. This shows equation (B.67).
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Second, equation (B.68) can be shown in the similar manner. Since

P

(
sup

θI2∈ΘI2

∣∣∣∣∣ 1T
T∑

t=τ+1

∇θk lI2,t(θI2)

∣∣∣∣∣ > S2

)

≤ P

(
sup

θI2∈ΘI2

∣∣∣∣∣ 1T
T∑

t=τ+1

{∇θk lI2,t(θI2)− E[∇θk lI2,t(θI2)]}

∣∣∣∣∣ > S2 −
T − τ

T
cl

)
,

(B.72)

we can apply Lemma 17 to the right hand side of the above equation, where S in

Lemma 17 is S2−T−τ
T cl. Letting ct,2 ≡ E[(supθI2∈ΘI2

|∇θk lI2,t(θI2)− E[∇θk lI2,t(θI2)]|)q],

which is, by Assumption 3 (2), bounded above by a constant, we obtain, for any

S2 >
(

3(T−τ)

T
√
T

maxτ≤t≤T c
2/q
t,2

)3/2
+ T−τ

T cl, that

P

(
sup

θI2∈ΘI2

∣∣∣∣∣ 1T
T∑

t=τ+1

∇θk lI2,t(θI2)

∣∣∣∣∣ > S2

)
≤ ϵS2

, (B.73)

where ϵS2
is bounded above uniformly in T when q > max{K2, 2}, independent

of k, and a decreasing function of S2. Thus, ϵS2
can be as small as possible by

taking S2 large. This shows equation (B.68).
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B.2 Proofs of results

Proof of Lemma 1

Proof. Since θ̂ = argmin
θ∈Θ

Qλ(θ), we have Qλ(θ̂) ≤ Qλ(θ0), that is, QT (θ̂) +

λ‖W ′θ̂‖2 ≤ QT (θ0) + λ‖W ′θ0‖2. Let ϵ = infθ:∥θ−θ0∥>δ QP (θ) − QP (θ0), where

ϵ > 0 by the uniqueness of θ0 in Assumption 2. Define an eventA = {supθ∈Θ |QT (θ)−

QP (θ)| ≤ ϵ/3}, where P (A) = 1 − P (Ac) = 1 − o(T−1) by Lemmas 13 and 14

under Assumptions 1, 2, and 3 (2). Conditional on A, we obtain

inf
θ:∥θ−θ0∥>δ

QT (θ) + λ‖W ′θ‖2 ≥ inf
θ:∥θ−θ0∥>δ

[QP (θ) +QT (θ)−QP (θ)]

≥ inf
θ:∥θ−θ0∥>δ

QP (θ)−
ϵ

3

= QP (θ0) + ϵ− ϵ

3

≥ QT (θ0) + ϵ− ϵ

3
− ϵ

3

= QT (θ0) + λ‖W ′θ0‖2 +
ϵ

3
− λ‖W ′θ0‖2

≥ QT (θ̂) + λ‖W ′θ̂‖2 + ϵ

3
− λ‖W ′θ0‖2. (B.74)

When ϵ/3 ≥ λ‖W ′θ0‖2, the above inequality implies infθ:∥θ−θ0∥>δ QT (θ) +

λ‖W ′θ‖2 ≥ QT (θ̂) + λ‖W ′θ̂‖2, which implies ‖θ̂ − θ0‖ ≤ δ.

Since ϵ/3 ≥ λ‖W ′θ0‖2 holds when ‖W ′θ0‖ = 0, we consider the case of

‖W ′θ0‖ > 0. Since the parameter space is assumed to be compact in Assumption

2, ‖W ′θ‖2 is bounded from above, implying that ϵ/3 ≥ λ‖W ′θ‖2 holds for T

large enough. Thus, we obtain

P (‖θ̂ − θ0‖ ≤ δ) = P (‖θ̂ − θ0‖ ≤ δ|A)P (A) + P (‖θ̂ − θ0‖ ≤ δ|Ac)P (Ac)

≥ 1− o(T−1). (B.75)
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Proof of Theorem 2

Proof. By Assumption 3 (1), θ̃ = (θ̃′I1 ,
˜̌θ′)′ ∈ Θ exists such that it lies between

θ̂ and θ0 element-wise and satisfies

QT (θ̂)−QT (θ0) =(θ̂ − θ0)
′∇θQT (θ0) +

1

2
(θ̂ − θ0)

′∇θθ′QT (θ̃)(θ̂ − θ0). (B.76)

We denote the K-dimensional vector ∇θQT (θ0) by

∇θQT (θ0) =
1

T

∑τ
t=1 ∇θI1

lI1,t(θI1,0) +
∑T

t=τ+1 ∇θI1
lI2,t(θI2,0)∑T

t=τ+1 ∇θ̌lI2,t(θI2,0)


≡ 1

T

 ∑T
t=1 U1,t(θ0)∑T

t=τ+1 U2,t(θ0)

 , (B.77)

where U1,t(θ0) = (u1,t,1(θ0), . . . , u1,t,K1
(θ0))

′ is the K1-dimensional vector such

that U1,t(θ0) = ∇θI1
lI1,t(θI1,0) for t = 1 . . . , τ and U1,t(θ0) = ∇θI1

lI2,t(θI2,0)

for t = τ + 1 . . . , T , and U2,t(θ0) = (u2,t,1(θ0), . . . , u2,t,K−K1(θ0))
′ is the K −

K1-dimensional vector such that U2,t(θ0) = ∇θ̌lI2,t(θI2,0) for t = τ + 1 . . . , T .

By Assumption 2, we have E[∇θQT (θ0)] = 0K . Moreover, each element of∑T
t=1 U1,t(θ0) is Op(T

1/2), because, for all j = 1, . . . ,K1, a constant C exists
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such that

Var

(
T∑

t=1

u1,t,j(θ0)

)
=E


[

T∑
t=1

u1,t,j(θ0)

]2 =

T∑
t=1

T∑
s=1

E [u1,t,j(θ0)u1,s,j(θ0)]

=

T∑
t=1

Var [u1,t,j(θ0)] +

T∑
t=1

T∑
s ̸=t

Cov [u1,t,j(θ0)u1,s,j(θ0)]

≤T‖u1,t,j(θ0)‖22 + 8

T∑
t=1

T∑
s ̸=t

‖|u1,t,j(θ0)‖q‖|u1,s,j(θ0)‖qα(|t− s|)1−2/q

≤TC + TC

∞∑
t=1

α(t)1−2/q = O(T ), (B.78)

where the first inequality is derived by using the Davydov inequality (e.g.,Corollary

A.2 in Hall and Heyde (2014)), the second inequality holds under Assumption

3 (2),
∑T

t=1 α(t)
1−2/q converges to a constant as T → ∞ by Assumption 1, and

q > 3 is an integer defined in Assumption 3 (2). Similarly, each element of∑T
t=τ+1 U2,t(θ0) is Op(T

a/2), because, for all j = 1, . . . ,K −K1, a constant C

exists such that

Var

(
T∑

t=τ+1

u2,t,j(θ0)

)
=E


[

T∑
t=τ+1

u2,t,j(θ0)

]2 =

T∑
t=τ+1

T∑
s=τ+1

E [u2,t,j(θ0)u2,s,j(θ0)]

=

T∑
t=τ+1

Var [u2,t,j(θ0)] +

T∑
t=τ+1

T∑
s ̸=t

Cov [u2,t,j(θ0)u2,s,j(θ0)]

≤T a‖u2,t,j(θ0)‖22 + 8

T∑
t=τ+1

T∑
s ̸=t

‖|u2,t,j(θ0)‖q‖|u2,s,j(θ0)‖qα(|t− s|)1−2/q

≤T aC + T aC

∞∑
t=1

α(t)1−2/q = O(T a). (B.79)

Thus, the first K1 elements of

IH∇θQT (θ0) =

 1
T

∑T
t=1 U1,t(θ0)

1
Ta

∑T
t=τ+1 U2,t(θ0)

 , (B.80)
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are Op(T
−1/2) and the remaining K −K1 elements are Op(T

−a/2), where IH is

defined in equation (3.6).

We write the K ×K matrix IH∇θθ′QT (θ̃) by

IH∇θθ′QT (θ̃) =

H11 H12

H21 H22

 , (B.81)

where

H11 =
1

T

τ∑
t=1

∇θI1θ
′
I1
lI1,t(θ̃I1) +

1

T

T∑
t=τ+1

∇θI1θ
′
I1
lI2,t(θ̃I2),

H12 =
1

T

τ∑
t=1

∇θI1 θ̌
′ lI1,t(θ̃I1) +

1

T

T∑
t=τ+1

∇θI1 θ̌
′ lI2,t(θ̃I2),

H21 =
1

T a

T∑
t=τ+1

∇θ̌θ′
I1

lI2,t(θ̃I2),

H22 =
1

T a

T∑
t=τ+1

∇θ̌θ̌′ lI2,t(θ̃I2). (B.82)

The first term of H11 can be decomposed as follows

1

T

τ∑
t=1

∇θI1θ
′
I1
lI1,t(θ̃I1) =

1

T

τ∑
t=1

E
[
∇θI1θ

′
I1
lI1,t(θI1,0)

]
+H111 +H112, (B.83)

where

H111 =
1

T

τ∑
t=1

{
∇θI1θ

′
I1
lI1,t(θI1,0)− E

[
∇θI1θ

′
I1
lI1,t(θI1,0)

]}
,

H112 =
1

T

τ∑
t=1

∇θI1θ
′
I1
lI1,t(θ̃I1)−

1

T

τ∑
t=1

∇θI1θ
′
I1
lI1,t(θI1,0). (B.84)

Let H(j,k)
111 be the j, k element of K1 ×K1 matrix H111. Under Assumptions 1,
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2, and 3 (2), we can apply Lemma 13 to the each element of H111, which yields

P
(∣∣∣H(j,k)

111

∣∣∣ > ϵ
)
= o(T−1), (B.85)

for any ϵ. For any δ > 0, we define two events A1 = {‖θ̂I1 − θI1,0‖ ≤ δ/2} and

A2 = { 1
T

∑τ
t=1[lt−E(lt)] ≤ δ/2}, where lt is a function defined in Assumption 3

(2). By Lemmas 1 and 15, we have P (A1∩A2) ≥ 1−P (Ac
1)−P (Ac

2) = 1−o(T−1).

Let H(j,k)
112 be the j, k element of K1 × K1 matrix H112. Then, conditional on

A = A1 ∩A2, for any j, k = 1, 2, . . . ,K1, we have

∣∣∣H(j,k)
112

∣∣∣ ≤ ∣∣∣∣∣ 1T
τ∑

t=1

‖θ̃I1 − θI1,0‖lt

∣∣∣∣∣ ≤ δ

2

∣∣∣∣∣ 1T
τ∑

t=1

lt

∣∣∣∣∣
≤ δ

2
|E(lt)|+

δ2

4
≤ δcl

2
+
δ2

4
, (B.86)

where cl is a constant defined in Assumption 3 (2). Thus, for any ϵ > 0, we

obtain

P
(∣∣∣H(j,k)

112

∣∣∣ > ϵ
)
= P

(∣∣∣H(j,k)
112

∣∣∣ > ϵ|A
)
P (A) + P

(∣∣∣H(j,k)
112

∣∣∣ > ϵ|Ac
)
P (Ac)

≤ P (Ac) = o(T−1). (B.87)

The second term of H11 can be decomposed as follows

1

T

T∑
t=τ+1

∇θI1θ
′
I1
lI2,t(θ̃I2) =

1

T

T∑
t=τ+1

E
[
∇θI1θ

′
I1
lI2,t(θI2,0)

]
+H113 +H114,

(B.88)
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where

H113 =
1

T

T∑
t=τ+1

{
∇θI1θ

′
I1
lI2,t(θI2,0)− E

[
∇θI1θ

′
I1
lI2,t(θI2,0)

]}
,

H114 =
1

T

T∑
t=τ+1

∇θI1θ
′
I1
lI2,t(θ̃I2)−

1

T

T∑
t=τ+1

∇θI1θ
′
I1
lI2,t(θI2,0). (B.89)

Let H(j,k)
113 be the j, k element of K1 ×K1 matrix H113. Under Assumptions

1, 2, and 3 (2), we can apply Lemma 14 to the each element of H113, which

yields

P
(∣∣∣H(j,k)

113

∣∣∣ > ϵ
)
= o(T−1), (B.90)

for any ϵ > 0.

For any δ > 0, we define two events A3 = {‖θ̂I2 − θI2,0‖ ≤ δ/2} and A4 =

{ 1
T

∑T
t=τ+1[lt − E(lt)] ≤ δ/2}. By Lemmas 1 and 16, we have P (A3 ∩ A4) ≥

1 − P (Ac
3) − P (Ac

4) = 1 − o(T−1). Let H(j,k)
114 be the j, k element of K1 × K1

matrix H114. Then, conditional on Ã = A3 ∩A4, for any j, k = 1, 2, . . . ,K1, we

have

∣∣∣H(j,k)
114

∣∣∣ ≤ ∣∣∣∣∣ 1T
T∑

t=τ+1

‖θ̃I2 − θI2,0‖lt

∣∣∣∣∣ ≤ δ

2

∣∣∣∣∣ 1T
T∑

t=τ+1

lt

∣∣∣∣∣
≤ δ

2
|E(lt)|+

δ2

4
≤ δcl

2
+
δ2

4
, (B.91)

where cl is a constant defined in Assumption 3 (2). Thus, for any ϵ > 0, we

obtain

P
(∣∣∣H(j,k)

114

∣∣∣ > ϵ
)
= o(T−1). (B.92)

Equations (B.83), (B.85), (B.87), (B.88), (B.90), and (B.92) indicate that
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for any ϵ > 0,

P
(∥∥H11 −H∗

11,T

∥∥ > ϵ
)
= o(T−1), (B.93)

where

H∗
11,T =

1

T

τ∑
t=1

E
[
∇θI1θ

′
I1
lI1,t(θI1,0)

]
+

1

T

T∑
t=τ+1

E
[
∇θI1θ

′
I1
lI2,t(θI2,0)

]
. (B.94)

In the similar way to the derivation of (B.93), we can show that for any

positive constant ϵ, we have

P
(∥∥H12 −H∗

12,T

∥∥ > ϵ
)
= o(T−1),

P
(∥∥H21 −H∗

21,T

∥∥ > ϵ
)
= o(T−a),

P
(∥∥H22 −H∗

22,T

∥∥ > ϵ
)
= o(T−a), (B.95)

where

H∗
12,T =

1

T

τ∑
t=1

E
[
∇θI1 θ̌

′ lI1,t(θI1,0)
]
+

1

T

T∑
t=τ+1

E
[
∇θI1 θ̌

′ lI2,t(θI2,0)
]
,

H∗
21,T =

1

T a

T∑
t=τ+1

E
[
∇θ̌θ′

I1

lI2,t(θI2,0)
]
,

H∗
22,T =

1

T a

T∑
t=τ+1

E [∇θ̌θ̌′ lI2,t(θI2,0)] . (B.96)

Thus, for any positive constant ϵ, we have

P
(∥∥∥IH∇θθ′QT (θ̃)− IH∇θθ′QP (θ0)

∥∥∥ > ϵ
)
= o(1), (B.97)
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where ∇θθ′QP (θ0) is the K ×K matrix such that

∇θθ′QP (θ0) =
1

T

τ∑
t=1

E[∇θθ′ lI1,t(θI1,0)] +
1

T

T∑
t=τ+1

E[∇θθ′ lI2,t(θI2,0)]

=

 H∗
11,T H∗

12,T

1
T 1−aH

∗
21,T

1
T 1−aH

∗
22,T

 . (B.98)

By the Weyl inequality, we have

ιmin(IH∇θθ′QP (θ0)) = ιmin(IH∇θθ′QT (θ̃) + IH∇θθ′QP (θ0)− IH∇θθ′QT (θ̃))

≤ ιmin(IH∇θθ′QT (θ̃)) + ιmax(IH∇θθ′QP (θ0)− IH∇θθ′QT (θ̃)),

which implies

ιmin(IH∇θθ′QT (θ̃)) ≥ ιmin(IH∇θθ′QP (θ0))−ιmax(IH∇θθ′QP (θ0)−IH∇θθ′QT (θ̃)).

Since |ιmax(A)| ≤ ‖A‖ for any symmetric matrix A, we have

ιmin(IH∇θθ′QT (θ̃)) ≥ ιmin(IH∇θθ′QP (θ0))− ‖IH∇θθ′QP (θ0)− IH∇θθ′QT (θ̃)‖

≥ cH − op(1), (B.99)

where the last inequality holds by Assumption 3 (3) and equation (B.97).

This implies that a K × K matrix E exists such that satisfies EE′ = I and

IH∇θθ′QT (θ̃) = EΛE′, where Λ is a K × K matrix whose diagonal elements

are eigenvalue of IH∇θθ′QT (θ̃). Thus, we have (θ̂ − θ0)
′I−1

H IH∇θθ′QT (θ̃)(θ̂ −

θ0) = (θ̂ − θ0)
′I−1

H EΛE′(θ̂ − θ0) ≥ ιmin(IH∇θθ′QT (θ̃))(θ̂ − θ0)
′I−1

H (θ̂ − θ0) ≥

ιmin(IH∇θθ′QT (θ̃))T
a−1‖θ̂ − θ0‖2 ≥ 0.

For now, let us denote the m×K restriction matrix by W = (w1, . . . , wm)′,
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where wi is a K-dimensional column vector. By a simple calculation, we obtain

∥∥∥Wθ̂
∥∥∥2 =

m∑
i=1

(w′
iθ̂)

2 =

m∑
i=1

(w′
iθ0)

2 + 2

m∑
i=1

θ̃′wiw
′
i(θ̂ − θ0)

= ‖Wθ0‖2 + 2θ̃′W ′W (θ̂ − θ0), (B.100)

where θ̃ lies between θ̂ and θ0.

Since Qλ(θ̂) − Qλ(θ0) ≤ 0 holds with probability 1 (w.p.1), it holds, along

with equation (B.76), that

0 ≥ Qλ(θ̂)−Qλ(θ0) = QT (θ̂)−QT (θ0) +

[∥∥∥Wθ̂
∥∥∥2 − ‖Wθ0‖2

]
= (θ̂ − θ0)

′∇θQT (θ0) +
1

2
(θ̂ − θ0)

′∇θθ′QT (θ̃)(θ̂ − θ0) + 2λθ̃′W ′W (θ̂ − θ0)

= (θ̂ − θ0)
′I−1

H IH∇θQT (θ0) +
1

2
(θ̂ − θ0)

′I−1
H IH∇θθ′QT (θ̃)(θ̂ − θ0) + 2λθ̃′W ′W (θ̂ − θ0),

(B.101)

which implies

− 2(θ̂ − θ0)
′I−1

H IH∇θQT (θ0)− 4λθ̃′W ′W (θ̂ − θ0)

≥(θ̂ − θ0)
′I−1

H IH∇θθ′QT (θ̃)(θ̂ − θ0) (B.102)

≥ιmin(IH∇θθ′QT (θ̃))T
a−1‖θ̂ − θ0‖2

≥0. (B.103)

Therefore, we obtain

ιmin(IH∇θθ′QT (θ̃))T
a−1‖θ̂ − θ0‖2 ≤ 2

[
‖I−1

H ‖ ‖IH∇θQT (θ0)‖+ 2λ‖θ̃′W ′W‖
]
‖θ̂ − θ0‖.

(B.104)

Since ‖IH∇θQT (θ0)‖ = Op(T
−a/2) by equation (B.80) and ‖I−1

H ‖ = O(1), we
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obtain

‖θ̂ − θ0‖ ≤ 2ιmin(IH∇θθ′QT (θ̃))
−1T 1−a

[
‖I−1

H ‖ ‖IH∇θQT (θ0)‖+ 2λ‖θ̃′W ′W‖
]

= Op(T
1− 3

2a) +Op(T
1−aλ). (B.105)

Proof of Theorem 3

Proof. By the definition of the estimator and Assumption 3 (1), θ̃ = (θ̃′I1 ,
˜̌θ′)′ ∈

Θ exists such that it lies between θ̂ and θ0 element-wise and satisfies

0K = ∇θQλ(θ̂) = ∇θQT (θ̂) +∇θλ
∥∥∥Wθ̂

∥∥∥2
= ∇θQT (θ0) +∇θθ′QT (θ̃)(θ̂ − θ0) +∇θλ

∥∥∥Wθ̂
∥∥∥2

= IH∇θQT (θ0) + IH∇θθ′QT (θ̃)(θ̂ − θ0) + IH∇θλ
∥∥∥Wθ̂

∥∥∥2 ,
(B.106)

where by equation (B.77),

∇θQT (θ0) =

 1
T

∑T
t=1 U1,t(θ0)

1
T

∑T
t=τ+1 U2,t(θ0)

 , (B.107)

and by equation (B.81),

IH∇θθ′QT (θ̃) =

H11 H12

H21 H22

 . (B.108)

146



Thus, we obtain

θ̂ − θ0 = −[IH∇θθ′QT (θ̃)]
−1IH∇θQT (θ0)− [IH∇θθ′QT (θ̃)]

−1IH∇θλ‖Wθ̂‖2.

(B.109)

Let WT be the K × K diagonal matrix whose first K1 diagonal elements are

T 1/2 and the remaining K −K1 diagonal elements are T 1/2
s . Then,

WT (θ̂ − θ0) =

√
T (θ̂I1 − θI1,0)
√
Ts(

ˆ̌θ − θ̌0)

 ≡ −ĤŜ − ĤÂ, (B.110)

where

Ĥ =WT [IH∇θθ′QT (θ̃)]
−1W−1

T

Ŝ =WT IH∇θQT (θ0)

Â =WT IH∇θλ‖Wθ̂‖2. (B.111)

Since IH∇θθ′QT (θ̃)−IH∇θθ′QP (θ0) = op(1) by equation (B.97) and IH∇θθ′QP (θ0) →

H > 0 by Assumption 3 (4), it holds that

Ĥ = H−1 + op(1) =

H∗
11 H∗

12

H∗
21 H∗

22


−1

+ op(1), (B.112)

where H∗
11 ≡ limT→∞H∗

11,T , H∗
12 ≡ limT→∞H∗

12,T , H∗
21 ≡ limT→∞H∗

21,T , and

H∗
22 ≡ limT→∞H∗

22,T .

Since θ̂ converges to θ0 in probability and the parameter space is assumed

to be compact in Assumption 2, we have ‖Wθ̂‖2 = Op(1). Thus, the orders of

K dimensional vector Â are λ
√
T for the first K1 elements and λ

√
Ts for the

remaining K −K1 elements, implying that Â = op(1) when λ = o(T− 1
2 ).
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By equation (B.77), Ŝ can be written as follows

Ŝ = WT IH∇θQT (θ0) =

 1√
T

∑T
t=1 U1,t(θ0)

1√
Ts

∑T
t=τ+1 U2,t(θ0)

 . (B.113)

Note that E[∇θQT (θ0)] = 0K under Assumption 3 (2) and ∇θQp(θ0) = 0K by

Assumption 2. Thus, we have

Var
(
Ŝ
)

=E(ŜŜ′) (B.114)

=

 1
T

∑T
t=1

∑T
s=1E [U1,t(θ0)U1,s(θ0)

′] 1√
TTs

∑T
t=1

∑T
s=τ+1E [U1,t(θ0)U2,s(θ0)

′]

1√
TTs

∑T
t=1

∑T
s=τ+1E [U2,t(θ0)U1,s(θ0)

′] 1
Ts

∑T
t=τ+1

∑T
s=τ+1E [U2,t(θ0)U2,s(θ0)

′]

 .

By Assumption 3 (5), the limit, in the sense of T → ∞, of Var(Ŝ), denoted as

Σ, exists and satisfies Var(Ŝ) → Σ > 0.

To show the asymptotic normality of Ŝ, we rewrite

Ŝ =
1√
T

 ∑T
t=1 U1,t(θ0)∑T

t=τ+1

√
T√
Ts
U2,t(θ0)

 =
1√
T

T∑
t=1

U1,t(θ0)

Ũ2,t(θ0)

 ≡ 1√
T

T∑
t=1

Ut(θ0),

(B.115)

where

Ũ2,t(θ0) =


0 t = 1, . . . , τ

√
T√
Ts
U2,t(θ0) t = τ + 1, . . . , T.

We show the asymptotic normality of the sum of triangular stochastic arrays

ZT,t ≡ 1√
T
ι′KUt(θ0), where ιK is arbitrary K×1 non-stochastic vector satisfying

‖ιK‖ = 1 (e.g., Theorem 25.6 in Davidson (1994)).
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By Assumption 1, ZT,t is a measurable function of a zero mean strong mixing

process, indicating that it is also near-epoch dependent in Lp-norm of any size

on {rt}. Let us define a positive constant array cT,t =
√
Var(ZT,t), where

Var(ZT,t) = Var(ι′KUt(θ0))/T = ι′K1
E[Ut(θ0)Ut(θ0)

′]ιK1/T exists for all t and

T by assumptions. Then, we have

sup
t,T

E|ZT,t/cT,t|q = sup
t,T

E|ZT,t|q/Var(ZT,t)
q/2 < 1, (B.116)

by the H�lder inequality, and the boundedness of

sup
T

{
T

(
max
1≤t≤T

{cT,t}
)2
}

= sup
T

{(
max
1≤t≤T

{√
ι′K1

E[Ut(θ0)Ut(θ0)′]ιK1

})2
}

(B.117)

is implied by Assumption 3 (5) and Ts/T → ζ for some 0 < ζ ≤ 1. Then, by

the central limit theorem for near-epoch dependent functions of strong mixing

process (e.g., Corollary 24.7 in Davidson (1994)), we obtain

1√
T

T∑
t=1

Ut(θ0)
d−→ N(0,Σ). (B.118)

Equations (B.110), (B.112), and (B.118) indicate that

Σ−1/2HWT (θ̂ − θ0)
d−→ N(0, IK). (B.119)

Proof of Lemma 4

Proof. Since θ̂ = (θ̂′I1 ,
ˆ̌θ′)′, it suffices to show that θ̂ ∈ Θδλ . By the definition of

Θδλ , it is proved when ‖W ′W (θ̂ − θ0)‖ ≤ δλ holds with probability 1− ϵS . By
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the definition of θ̂, we have

0 = ∇θQλ(θ̂) = ∇θQT (θ̂) + 2λW ′W (θ0 + θ̂ − θ0), (B.120)

which implies that

2λW ′W (θ̂ − θ0) = −∇θQT (θ̂)− 2λW ′Wθ0. (B.121)

Lemma 18 indicates that a positive constant S exists such that P (‖∇θQT (θ̂)‖ >

S) ≤ ϵS for any T ≥ 2 and arbitrary small ϵS > 0. Thus, we obtain

1 = P

(
‖W ′W (θ̂ − θ0)‖ ≤ 1

2λ

[
‖∇θQT (θ̂)‖+ 2λ‖W ′Wθ0‖

])
≤ P

(
‖W ′W (θ̂ − θ0)‖ ≤ δλ

)
+ ϵS . (B.122)

Proof of Theorem 6

Proof. For simplicity, let ϵ denote ϵS in this proof. Let Qp(θ1, θ2) ≡ Qp(θ1) −

Qp(θ2) and QT (θ1, θ2) ≡ QT (θ1)−QT (θ2). By the definition of θ̂, it holds that

λ‖W ′θ̂‖2 +QT (θ̂, θ0) ≤ λ‖Wθ0‖2. By using this, we obtain

λ‖Wθ̂‖2 +Qp(θ̂)−Qp(θ0) = λ‖Wθ̂‖2 +QT (θ̂, θ0) +Qp(θ̂, θ0)−QT (θ̂, θ0)

≤ λ‖Wθ0‖2 +Qp(θ̂, θ0)−QT (θ̂, θ0)

= λ‖Wθ0‖2 + V (θ̂, θ0), (B.123)

where V (θ̂, θ0) ≡ Qp(θ̂, θ0) − QT (θ̂, θ0). Note that ‖Wθ0‖ represents the cor-

rectness of the weight W , which can be zero with an appropriate weight.
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We decompose V (θ̂, θ0) as follows:

V (θ̂, θ0) = Qp(θ̂)−Qp(θ0)−QT (θ̂) +QT (θ0)

=
1

T

τ∑
t=1

E[lI1,t(θ̂I1)] +
1

T

T∑
t=τ+1

E[lI2,t(θ̂I2)]−
1

T

τ∑
t=1

E[lI1,t(θI1,0)]−
1

T

T∑
t=τ+1

E[lI2,t(θI2,0)]

− 1

T

τ∑
t=1

lI1,t(θ̂I1)−
1

T

T∑
t=τ+1

lI2,t(θ̂I2) +
1

T

τ∑
t=1

lI1,t(θI1,0) +
1

T

T∑
t=τ+1

lI2,t(θI2,0)

=
1

T

τ∑
t=1

{
E[lI1,t(θ̂I1)− lI1,t(θI1,0)]− [lI1,t(θ̂I1)− lI1,t(θI1,0)]

}
+

1

T

T∑
t=τ+1

{
E[lI2,t(θ̂I2)− lI2,t(θI2,0)]− [lI2,t(θ̂I2)− lI2,t(θI2,0)]

}

≡ 1

T

τ∑
t=1

ξ̃t(θ̂I1) +
1

T

T∑
t=τ+1

ξt(θ̂I2). (B.124)

For any θI1 ∈ Θ̃δλ , we obtain,

E[ξ̃t(θI1)
2] = E

{
[lI1,t(θI1)− lI1,t(θI1,0)]

2
}
− E[lI1,t(θI1)− lI1,t(θI1,0)]

2

≤ E
{
[lI1,t(θI1)− lI1,t(θI1,0)]

2
}

≤ E

[
‖θI1 − θI1,0‖2 sup

θI1∈Θ̃δλ

∥∥∇θI1
lI1,t(θI1)

∥∥2]

≤ κ21K1cl, (B.125)

where κ1 = supθI1∈Θ̃δλ
‖θ− θ0‖ exist by the compactness of Θδλ in Assumption

2 and cl is a constant defined in Assumption 3 (2). By Assumption 3 (2) and

the boundedness of the conditional densities, we obtain ‖ξ̃t(·)‖∞ ≤ 2(l + cl).

Then, applying Theorem 4.3 of Modha and Masry (1996) (see also Theorem 5.1

of Hang and Steinwart, 2014) yields

P

(
1

T

τ∑
t=1

ξ̃t(θI1) ≥
τ3/4

T
κ1
√
cρ̃K1cl +

τ1/2

T

cρ̃

3
2(l + cl)

)
≤ (1 + 4e−2cα)e

−c,
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for all θI1 ∈ Θ̃δλ , τ ≥ max{− log ρ/8, 27(− log ρ)−1}, and c > 0, where ρ̃ ≡

(−83/ log ρ)1/2, and ρ and cα are the upper bound of the mixing coefficient

given in Assumption 1. Since θ̂I1 ∈ Θ̃δλ with probability 1 − ϵ for arbitrary

small ϵ by Lemma 4, we obtain

P

(
1

T

τ∑
t=1

ξ̃t(θ̂I1) ≥
τ3/4

T
κ1
√
cρ̃K1cl +

τ1/2

T

cρ̃

3
2(l + cl)

)

≤ P

(
max

θI1∈Θ̃δλ

1

T

τ∑
t=1

ξ̃t(θI1) ≥
τ3/4

T
κ1cρ̃K1cl +

τ1/2

T

cρ̃

3
2(l + cl)

)
+ ϵ

≤ (1 + 4e−2cα)e
−c + ϵ, (B.126)

for all τ ≥ max{− log ρ/8, 27(− log ρ)−1} and c > 0.

Similar calculation yields, for any θI2 ⊂ θ ∈ Θδλ ,

E[ξt(θI2)
2] ≤ κ22E

(
sup

θI2⊂θ∈Θδλ

∥∥∇θI2
lI2,t(θI2)

∥∥2) ≤ κ22K2cl, (B.127)

where κ2 = supθI2∈{θI2 :Θδλ
} ‖θ − θ0‖ and ‖ξt(·)‖∞ ≤ 2(l + cl). Since θ̂I2 ⊂ θ̂ ∈

Θδλ with probability 1− ϵ for arbitrary small ϵ by Lemma 4, applying Theorem

4.3 of Modha and Masry (1996) yields

P

(
1

T

T∑
t=τ+1

ξt(θ̂I2) ≥
T

3a
4

T
κ2
√
cρ̃K2cl +

T
a
2

T

cρ̃

3
2(l + cl)

)
≤ (1 + 4e−2cα)e

−c + ϵ,

(B.128)

for all T a ≥ max{− log ρ/8, 27(− log ρ)−1} and c > 0.

From equations (B.124), (B.126), and (B.128), we obtain

P

(
V (θ̂, θ0) ≤

(
τ3/4

T
+
T

3a
4

T

)
κ

√
cρ̃K̄cl +

(
τ1/2

T
+
T

a
2

T

)
cρ̃

3
2(l + cl)

)
> 1− 4(1 + 4e−2cα)e

−c − 4ϵ (B.129)
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for all c > 0 and τ, T a ≥ max{− log ρ/8, 27(− log ρ)−1}, where K̄ ≡ max{K1,K2}

and κ ≡ supθ∈Θδλ
‖θ − θ0‖.

From equations (B.123) and (B.129), we obtain that for a fixed λ > 0, all

c > 0, and τ, T a ≥ max{− log ρ/8, 27(− log ρ)−1}, the probability that

λ‖Wθ̂‖2 +Qp(θ̂)−Qp(θ0) ≤ λ‖Wθ0‖2 +
(
τ3/4

T
+
T 3a/4

T

)
κ

√
cρ̃K̄cl

+

(
τ1/2

T
+
T

a
2

T

)
cρ̃

3
2(l + cl) (B.130)

is not less than 1− 4(1 + 4e−2cα)e
−c − 4ϵ.

Risk Bound for Non-penalized Estimator (Theorem B.1)

Theorem B.1. Let θ̂ be the ML estimator of θ, that is,

θ̂ = argmin
θ∈Θ

QT (θ), (B.131)

where

QT (θ) =
1

T

τ∑
t=1

lI1,t(θI1) +
1

T

T∑
t=τ+1

lI2,t(θI2). (B.132)

Suppose assumptions of Theorem 6. We assume that the ML estimator θ̂

is well-defined, measurable, and consistent. For any c > 0 and all τ, T a ≥

max{− log ρ/8, 27(− log ρ)−1}, the probability that

Qp(θ̂)−Qp(θ0) ≤

(
τ3/4

T
+
T

3a
4

T

)
κ̄

√
cρ̃K̄cl +

(
τ1/2

T
+
T

a
2

T

)
2cρ̃(l + cl)

3

(B.133)

is not less than 1− 4(1 + 4e−2cα)e
−c, where κ̄ ≡ supθ∈Θ ‖θ − θ0‖.
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Proof. By the definition of θ̂, we have QT (θ̂, θ0) ≤ 0. By using this, we obtain

Qp(θ̂)−Qp(θ0) = Qp(θ̂, θ0)−QT (θ̂, θ0) +QT (θ̂, θ0)

≤ Qp(θ̂, θ0)−QT (θ̂, θ0)

= V (θ̂, θ0), (B.134)

where, by equation (B.124),

V (θ̂, θ0) =
1

T

τ∑
t=1

ξ̃t(θ̂I1) +
1

T

T∑
t=τ+1

ξt(θ̂I2). (B.135)

For any θI1 ∈ ΘI1 ,

E[ξ̃t(θI1)
2] = E

{
[lI1,t(θI1)− lI1,t(θI1,0)]

2
}
− E[lI1,t(θI1)− lI1,t(θI1,0)]

2

≤ E
{
[lI1,t(θI1)− lI1,t(θI1,0)]

2
}

≤ E

[
‖θI1 − θI1,0‖2 sup

θI1∈ΘI1

∥∥∇θI1
lI1,t(θI1)

∥∥2]

≤ κ̄21K1cl, (B.136)

where κ̄1 ≡ supθI1∈ΘI1
‖θI1−θI1,0‖ exists by the compactness of ΘI1 in Assump-

tion 2 and cl is a constant defined in Assumption 3 (2). By Assumption 3 (2)

and the boundedness of the conditional densities, we obtain ‖ξ̃t(·)‖∞ ≤ 2(l+cl).

Applying Theorem 4.3 of Modha and Masry (1996) yields

P

(
1

T

τ∑
t=1

ξ̃t(θ̂I1) ≥
τ3/4

T
κ̄1
√
cρ̃K1cl +

τ1/2

T

cρ̃

3
2(l + cl)

)

P

(
max

θI1∈ΘI1

1

T

τ∑
t=1

ξ̃t(θI1) ≥
τ3/4

T
κ̄1
√
cρ̃K1cl +

τ1/2

T

cρ̃

3
2(l + cl)

)
≤ (1 + 4e−2cα)e

−c (B.137)
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for all τ ≥ max{− log ρ/8, 27(− log ρ)−1} and c > 0, where ρ̃ ≡ (−83/ log ρ)1/2.

Applying similar arguments for ξt(θI2) yields, for any θI2 ∈ ΘI2 ,

E[ξt(θI2)
2] ≤ κ̄22E

[
sup

θI2∈ΘI2

∥∥∇θI2
lI2,t(θI2)

∥∥2] ≤ κ̄22K2cl, (B.138)

where κ̄2 ≡ supθI2∈ΘI2
‖θI2 −θI2,0‖ and ‖ξt(·)‖∞ ≤ 2(l+cl). Applying Theorem

4.3 of Modha and Masry (1996) yields

P

(
1

T

T∑
t=τ+1

ξt(θ̂I2) ≥
T

3a
4

T
κ̄2
√
cρ̃K2cl +

T
a
2

T

cρ̃

3
2(l + cl)

)
≤ (1 + 4e−2cα)e

−c

(B.139)

for all T a ≥ max{− log ρ/8, 27(− log ρ)−1} and c > 0.

Thus, we obtain

P

(
Qp(θ̂)−Qp(θ0) ≤

(
τ3/4

T
+
T

3a
4

T

)
κ̄

√
cρ̃K̄cl +

(
τ1/2

T
+
T

a
2

T

)
cρ̃

3
2(l + cl)

)
> 1− 4(1 + 4e−2cα)e

−c (B.140)

for all c > 0 and τ, T a ≥ max{− log ρ/8, 27(− log ρ)−1}, where κ̄ ≡ supθ∈Θ ‖θ−

θ0‖.

Alternative Risk Bound for TMLE (Theorem B.2)

Theorem B.2. Suppose assumptions in Theorem 6 holds. For a fixed λ > 0, any

c > 0 and ϵ > 0, and all τ, T a ≥ max{− log ρ/8, 27(− log ρ)−1}, the probability

that

λ‖Wθ̂‖2 +Qp(θ̂)−Qp(θ0) ≤ λ‖Wθ0‖2 +
(
τ3/4

T
+
T 3a/4

T

)
(δλ + ωκ)

√
cρ̃K̄cl

+

(
τ1/2

T
+
T

a
2

T

)
2cρ̃(l + cl)

3
(B.141)
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is not less than 1− 2(1 + 4e−2cα)e
−c − 2ϵ, where ω ≡ ‖Ik −W ′W‖.

Proof. With respect to equation (B.124), it holds for any θI1 ∈ Θ̃δλ that

E[ξ̃t(θI1)
2] = E

{
[lI1,t(θI1)− lI1,t(θI1,0)]

2
}
− E[lI1,t(θI1)− lI1,t(θI1,0)]

2

≤ E
{
[lI1,t(θI1)− lI1,t(θI1,0)]

2
}

≤ E

[
‖θI1 − θI1,0‖2 sup

θI1∈Θ̃δλ

∥∥∇θI1
lI1,t(θI1)

∥∥2]

≤ E

[
‖W ′W (θ − θ0) + (Ik −W ′W )(θ − θ0)‖2 sup

θI1∈Θ̃δλ

∥∥∇θI1
lI1,t(θI1)

∥∥2]

≤ (δλ + ωκ)2E

(
sup

θI1∈Θ̃δλ

∥∥∇θI1
lI1,t(θI1)

∥∥2)

≤ (δλ + ωκ)2K1cl. (B.142)

Similarly, it holds for any θI2 ⊂ θ ∈ Θδλ that

E[ξt(θI2)
2] ≤ (δλ + ωκ)2E

(
sup

θI2⊂θ∈Θδλ

∥∥∇θI2
lI2,t(θI2)

∥∥2)

≤ (δλ + ωκ)2K2cl. (B.143)

Then, by replacing equations (B.125) and (B.127) in the proof of Theorem 6 with

(B.142) and (B.143), respectively, we obtain the assertion of this theorem.

156



Proof of Theorem 9

Proof. Note that

0 ≤QPo
(λ̄T )−QPo

(θ0)

=QPo
(λ̄T )−QP b

T
(λ̄T ) +QP b

T
(λ̄T )−QPB

T
(λ̄T )

+QPB
T
(λ̄T )−QP b

T
(λ̂T ) +QP b

T
(λ̂T )−QPo

(λ̌T ) +QPo
(λ̌T )−QPo

(λ̃T )

+QPo
(λ̃T )−QPo

(θ0)

≤
{
QPo

(λ̄T )−QP b
T
(λ̄T )

}
+
{
QP b

T
(λ̄T )−QPB

T
(λ̄T )

}
+
{
QPB

T
(λ̂T )−QP b

T
(λ̂T )

}
+
{
QP b

T
(λ̌T )−QPo(λ̌T )

}
+
{
QPo(λ̌T )−QPo(λ̃T )

}
+QPo

(λ̃T )−QPo
(θ0) . (B.144)

Since

QT (θ̂λT
, XT ) =

1

T

τ∑
t=1

lI1,t(θ̂I1,λT
) +

1

T

T∑
t=τ+1

lI2,t(θ̂I2,λT
),

then

QPo
(λT ) =

∫
QT (θ̂λT

, xT )dPo

=

∫
1

T

τ∑
t=1

lI1,t(θ̂I1,λT
) +

1

T

T∑
t=τ+1

lI2,t(θ̂I2,λT
)dPo

=
τ

T

∫
1

τ

τ∑
t=1

lI1,t(θ̂I1,λT
)dPo +

T − τ

T

∫
1

T − τ

T∑
t=τ+1

lI2,t(θ̂I2,λT
)dPo

=
τ

T

∫
1

τ

τ∑
t=1

lI1,t(θ̂I1,λT
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]
dPo

+
T − τ

T

∫
1

T − τ

T∑
t=τ+1

lI2,t(θ̂I2,λT
)− 1

T − τ

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λT

)
]
dPo

+

∫
1

T

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]
+

1

T

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λT

)
]
dPo
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and

−QPo(λT ) ≤
τ

T

∫ ∣∣∣∣∣1τ
τ∑

t=1

lI1,t(θ̂I1,λT
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]∣∣∣∣∣ dPo

+
T − τ

T

∫ ∣∣∣∣∣ 1

T − τ

T∑
t=τ+1

lI2,t(θ̂I2,λT
)− 1

T − τ

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λT

)
]∣∣∣∣∣ dPo

−
∫

1

T

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]
+

1

T

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λT

)
]
dPo.

We first deal withQPo
(λ̄T ). For 1

τ

∑τ
t=1 lI1,t(θ̂I1,λ̄T

)− 1
τ

∑τ
t=1EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
,

we can obtain that for all ϵ > 0,

Po

(
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
> ϵ

)

≤ Po

(∣∣∣∣∣1τ
τ∑

t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]∣∣∣∣∣ > ϵ

)

≤ K(T ) max
λT∈ΛT

Po

(∣∣∣∣∣1τ
τ∑

t=1

lI1,t(θ̂I1,λT
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]∣∣∣∣∣ > ϵ

)
.

(B.145)

Notice that θ̂λT
is given (fixed), hence

∑τ
t=1 lI1,t(θ̂I1,λT

)−
∑τ

t=1EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]

is a martingale under the distribution of Xt conditional on θ̂λT
.

Since supθ̂I1,λT
∈ΘI1

,XT∈XT

∣∣∣lI1,t(θ̂I1,λT
)
∣∣∣ ≤ M and HLI1

(λT ),M (δ,Ω1) exists

by the assumption in Theorem 9, for

ϵ ≤ C1C
2
3/M,

ϵ ≤ 8C3,

ϵ ≥ 1√
τ
C0

(∫ C3

ϵ/26
H

1/2
LI1

(λT ),M (u,Ω1)du ∨ C3

)
,

C2
0 ≥ C2(C1 + 1),
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where C, C0, and C1 are some positive constants and C3 =
√
2M2(e− 2), it

follows that

Po

(∣∣∣∣∣1τ
τ∑

t=1

lI1,t(θ̂I1,λT
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]∣∣∣∣∣ > ϵ

)

= Po

(
√
τ

∣∣∣∣∣1τ
τ∑

t=1

lI1,t(θ̂I1,λT
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λT

)
]∣∣∣∣∣ > √

τϵ

)

≤ C exp

[
− (

√
τϵ)2

C2(C1 + 1)C2
3

]

by the uniform inequality for martingales (see Theorem 8.13 of Geer et al.

(2000)).

Therefore, for (B.145), we have

Po

(
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
> ϵ

)

≤ K(T )C exp

[
− (

√
τϵ)2

C2(C1 + 1)C2
3

]
.

Note that, for any random variable X,

E(X) ≤ E[I(X > 0)X] =

∫ ∞

0

P (X > x)dx

because, according to P (X > x) =
∫∞
x
f(z)dz in which f(·) refers to the density

function of X, it follows that

∫ ∞

0

P (X > x)dx =

∫ ∞

0

∫ ∞

x

f(z)dzdx =

∫∫
0<x<z<∞

f(z)d(x, z)

=

∫ ∞

0

∫ z

0

f(z)dxdz =

∫ ∞

0

f(z)

∫ z

0

dxdz

=

∫ ∞

0

zf(z)dz = E[I(X > 0)X],

where the third equation holds by Fubini’s theorem.
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Let a = 1√
τ
C0

(∫ C3

ϵ/26
H

1/2
LI1

(λT ),M (u,Ω1)du ∨ C3

)
. Then we have

EPo

[
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]]

≤
∫ ∞

0

Po

(
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
> x

)
dx

=

∫ a

0

Po

(
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
> x

)
dx

+

∫ ∞

a

Po

(
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
> x

)
dx

≤a+
∫ ∞

a

K(T ) · C exp

[
− (

√
τx)2

C2(C1 + 1)C2
3

]
dx

=a+
K(T ) · C

√
πC2(C1 + 1)C2

3Erfc
[√

τ/C2(C1 + 1)C2
3a
]

2
√
τ

≤a+ 2K(T ) · C
√
πC2(C1 + 1)C2

3

2
√
τ

=O

(
1√
τ

)
+O

(
K(T )√

τ

)
=O

(
K(T )√

τ

)
,

which means that

EPo

[
1

τ

τ∑
t=1

lI1,t(θ̂I1,λ̄T
)− 1

τ

τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]]

≤ O

(
K(T )√

τ

)
.

(B.146)

Similarly for 1
T−τ

∑T
t=τ+1 lI2,t(θ̂I2,λ̄T

)− 1
T−τ

∑T
t=τ+1EPo|Ft−1

[
lI2,t(θ̂I2,λ̄T

)
]
,

we can show that

EPo

[
1

T − τ

T∑
t=τ+1

lI2,t(θ̂I2,λ̄T
)− 1

T − τ

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λ̄T

)
]]

≤ O

(
K(T )√
T − τ

)
.

(B.147)
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Combining (B.146), (B.147), and QPo(λ̄T ), we have

QPo(λ̄T ) ≤O
(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
+

1

T

∫ τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
+

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λ̄T

)
]
dPo.

(B.148)

Second, we deal with −QP b
T
(λ̄T ), QP b

T
(λ̌T ), and −QPo

(λ̌T ) using the similar

derivation of (B.148), then the following inequalities hold.

−QP b
T
(λ̄T ) ≤O

(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
− 1

T

∫ τ∑
t=1

EP b
T |Ft−1

[
lI1,t(θ̂I1,λ̄T

)
]
+

T∑
t=τ+1

EP b
T |Ft−1

[
lI2,t(θ̂I2,λ̄T

)
]
dP b

T ,

(B.149)

QP b
T
(λ̌T ) ≤O

(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
+

1

T

∫ τ∑
t=1

EP b
T |Ft−1

[
lI1,t(θ̂I1,λ̌T

)
]
+

T∑
t=τ+1

EP b
T |Ft−1

[
lI2,t(θ̂I2,λ̌T

)
]
dP b

T ,

(B.150)

and

−QPo(λ̌T ) ≤O
(
K(T )

√
τ

T

)
+O

(
K(T )

√
T − τ

T

)
− 1

T

∫ τ∑
t=1

EPo|Ft−1

[
lI1,t(θ̂I1,λ̌T

)
]
+

T∑
t=τ+1

EPo|Ft−1

[
lI2,t(θ̂I2,λ̌T

)
]
dPo.

(B.151)

Third, let us consider QP b
T
(λ̄T )−QPB

T
(λ̄T ) and QPB

T
(λ̂T )−QP b

T
(λ̂T ).
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As for QPB
T
(λ̂T )−QP b

T
(λ̂T ), we can obtain that for all ϵ > 0,

PP b
T

(
QPB

T
(λ̂T )−QP b

T
(λ̂T ) > ϵ

)
≤ PP b

T

(∣∣∣QPB
T
(λ̂T )−QP b

T
(λ̂T )

∣∣∣ > ϵ
)

= PP b
T

(∣∣∣∣∣ 1B
B∑
i=1

QT (θ̂λ̂T
, Xb

T,i)−QP b
T
(λ̂T )

∣∣∣∣∣ > ϵ

)

≤ K(T ) max
λT∈ΛT

PP b
T

(∣∣∣∣∣ 1B
B∑
i=1

QT (θ̂λT
, Xb

T,i)−QP b
T
(λT )

∣∣∣∣∣ > ϵ

)
.

Since supθ̂λT
∈Θ,Xb

T∈X b
T

∣∣∣QT (θ̂λT
, Xb

T )−QP b
T
(λT )

∣∣∣ ≤ C2 < ∞ a.s. according

to the assumption in Theorem 9 and B bootstrap sequences are i.i.d. (i.e.,

Xb
T,1, · · · , Xb

T,B are i.i.d.), then it follows that

PP b
T

(
1

B

B∑
i=1

QT (θ̂λT
, Xb

T,i)−QP b
T
(λT ) > ϵ

)
≤ exp

[
−1

2

ϵ2B

C5 + ϵC2/3

]
,

(B.152)

where C5 = EP b
T

∣∣∣QT (θ̂λT
, Xb

T )−QP b
T
(λT )

∣∣∣2, by the Bernstein inequality for

i.i.d. random variables (see Theorem 4.1 in Modha and Masry (1996)). Note

that (B.152) implies

PP b
T

(∣∣∣∣∣ 1B
B∑
i=1

QT (θ̂λT
, Xb

T,i)−QP b
T
(λT )

∣∣∣∣∣ > ϵ

)
≤ 2 exp

[
−1

2

ϵ2B

C5 + ϵC2/3

]
.

Hence,

PP b
T

(
QPB

T
(λ̂T )−QP b

T
(λ̂T ) > ϵ

)
≤ 2K(T ) exp

[
−1

2

ϵ2B

C5 + 2ϵC2/3

]
.
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Since, for any random variable X,

E(X) ≤ E[I(X > 0)X] =

∫ ∞

0

P (X > x)dx,

we have

EP b
T

(
QPB

T
(λ̂T )−QP b

T
(λ̂T )

)
≤
∫ ∞

0

PP b
T

(
QPB

T
(λ̂T )−QP b

T
(λ̂T ) > x

)
dx

≤
∫ ∞

0

2K(T ) exp

[
−1

2

x2B

C5 + 2xC2/3

]
dx

=

∫ 1

0

2K(T ) exp

[
−1

2

x2B

C5 + 2xC2/3

]
dx+

∫ ∞

1

2K(T ) exp

[
−1

2

x2B

C5 + 2xC2/3

]
dx

≤
∫ 1

0

2K(T ) exp

[
−1

2

x2B

C5 + 2C2/3

]
dx+

∫ ∞

1

2K(T ) exp

[
−1

2

xB

C5 + 2C2/3

]
dx

=
2K(T )

√
π(C5 + 2C2/3)/2

[
Erf
(√

B
2(C5+2C2/3)

)]
√
B

+
4K(T )(C5 + 2C2/3) exp

[
− B

2(C5+2C2/3)

]
B

≤
2K(T )

√
π(C5 + 2C2/3)/2√

B
+

4K(T )(C5 + 2C2/3)

B

=O

(
K(T )√
B

)
+O

(
K(T )

B

)
=O

(
K(T )√
B

)
.

Hence,

EP b
T

[
QPB

T
(λ̂T )−QP b

T
(λ̂T )

]
≤ O

(
K(T )√
B

)
. (B.153)

Similarly for QP b
T
(λ̄T )−QPB

T
(λ̄T ) , we have

EP b
T

[
QP b

T
(λ̄T )−QPB

T
(λ̄T )

]
≤ O

(
K(T )√
B

)
. (B.154)
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Lastly, we deal with Qpo
(λ̌T )−Qpo

(λ̃T ). Let λ∗T = argminλT∈ΛT

∣∣∣λT − λ̃T

∣∣∣.
Note that

Qpo(λ̌T )−Qpo(λ̃T ) ≤ Qpo(λ
∗
T )−Qpo(λ̃T ).

Since Qpo(λT ) is Lipschitz continuous by the assumption in Theorem 9,

∣∣∣Qpo
(λ∗T )−Qpo

(λ̃T )
∣∣∣ ≤ m

∣∣∣λ∗T − λ̃T

∣∣∣ = O

(
c

K(T )

)
, (B.155)

where m is a positive real constant.

Combining (B.148), (B.149), (B.150), (B.151), (B.153), (B.154), and (B.155),

we get the results by taking expectations on both sides of (B.144).

Proof of Theorem 11

Proof. Since
∥∥∥θ̂ − θ0

∥∥∥ = op(1) by Lemma 1, we have D̂ = Do + op(1) where

Do means the distribution with real values of parameters, which implies that

P b
T = Po + op(1). Therefore, A = op(1).

B.3 Artificial simulations and empirical applica-

tions

This section presents more details about 3 Cases in the artificial simulations and

2 schemes (i.e., the incremental window and rolling window) in the empirical

applications. Note that for each table, we present the result of each fixed λ

besides the results of the 1SMLE, 2SQMLE, MLE, TMLE1, and TMLE2.
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Case 1

Case 1: T = 100, τ = 95

Table B.1: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 8.58727 0.00954 0.01204 0.01083 0.01077 0.01068 0.01066
b22 11.69063 5.62809 0.43382 0.02211 0.01453 0.01296 0.01218
MSE 20.27790 5.63763 0.44586 0.03294 0.02530 0.02364 0.02284

1 2 4 6 8 10 20
b11 0.01069 0.01055 0.01054 0.01054 0.01054 0.01054 0.01054
b22 0.01185 0.01096 0.01073 0.01066 0.01063 0.01061 0.01058
MSE 0.02254 0.02151 0.02128 0.02120 0.02116 0.02116 0.02111

40 60 80 100 200 400 600
b11 0.01053 0.01053 0.01054 0.01056 0.01055 0.01048 0.01050
b22 0.01055 0.01054 0.01055 0.01056 0.01055 0.01049 0.01050
MSE 0.02108 0.02106 0.02109 0.02112 0.02110 0.02097 0.02100

800 1000 TMLE1 TMLE2

b11 0.01033 0.01040 0.01024 0.01029
b22 0.01033 0.01040 0.01583 0.01484
MSE 0.02066 0.02080 0.02607 0.02513
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Figure B.1: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.2: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 100, τ = 90

Table B.2: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.16719 0.00954 0.00989 0.00950 0.00955 0.00957 0.00958
b22 0.15697 0.14541 0.12073 0.01576 0.01179 0.01081 0.01041
MSE 0.32417 0.15495 0.13062 0.02526 0.02134 0.02038 0.01999

1 2 4 6 8 10 20
b11 0.00959 0.00960 0.00961 0.00961 0.00961 0.00961 0.00961
b22 0.01020 0.00985 0.00972 0.00968 0.00966 0.00965 0.00963
MSE 0.01979 0.01945 0.01933 0.01929 0.01927 0.01926 0.01924

40 60 80 100 200 400 600
b11 0.00961 0.00961 0.00962 0.00961 0.00961 0.00962 0.00961
b22 0.00962 0.00962 0.00963 0.00962 0.00962 0.00962 0.00961
MSE 0.01923 0.01923 0.01925 0.01923 0.01923 0.01924 0.01923

800 1000 TMLE1 TMLE2

b11 0.00964 0.00965 0.00965 0.00953
b22 0.00964 0.00965 0.01260 0.01234
MSE 0.01928 0.01931 0.02225 0.02187
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Figure B.3: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.4: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 100, τ = 80

Table B.3: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.05995 0.00954 0.00988 0.00889 0.00893 0.00896 0.00898
b22 0.06553 0.06488 0.06108 0.01553 0.01165 0.01053 0.01004
MSE 0.12549 0.07442 0.07096 0.02442 0.02058 0.01949 0.01902

1 2 4 6 8 10 20
b11 0.00900 0.00902 0.00904 0.00904 0.00905 0.00905 0.00905
b22 0.00980 0.00935 0.00918 0.00914 0.00911 0.00910 0.00908
MSE 0.01880 0.01837 0.01822 0.01818 0.01816 0.01815 0.01813

40 60 80 100 200 400 600
b11 0.00905 0.00905 0.00905 0.00906 0.00906 0.00904 0.00904
b22 0.00907 0.00906 0.00906 0.00906 0.00906 0.00904 0.00904
MSE 0.01812 0.01812 0.01812 0.01812 0.01811 0.01808 0.01807

800 1000 TMLE1 TMLE2

b11 0.00904 0.00900 0.00899 0.00892
b22 0.00904 0.00900 0.01139 0.01152
MSE 0.01807 0.01800 0.02038 0.02044
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Figure B.5: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.6: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 400, τ = 390

Table B.4: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.17447 0.00261 0.00263 0.00259 0.00259 0.00259 0.00259
b22 0.15926 0.14803 0.11628 0.00306 0.00273 0.00266 0.00263
MSE 0.33373 0.15064 0.11891 0.00565 0.00531 0.00525 0.00522

1 2 4 6 8 10 20
b11 0.00259 0.00259 0.00259 0.00259 0.00259 0.00259 0.00259
b22 0.00262 0.00260 0.00259 0.00259 0.00259 0.00259 0.00259
MSE 0.00521 0.00519 0.00518 0.00518 0.00518 0.00518 0.00518

40 60 80 100 200 400 600
b11 0.00259 0.00259 0.00259 0.00259 0.00259 0.00259 0.00261
b22 0.00259 0.00259 0.00259 0.00260 0.00259 0.00259 0.00261
MSE 0.00518 0.00518 0.00518 0.00519 0.00518 0.00517 0.00522

800 1000 TMLE1 TMLE2

b11 0.00263 0.00267 0.00259 0.00258
b22 0.00263 0.00267 0.00569 0.00314
MSE 0.00527 0.00534 0.00828 0.00572
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Figure B.7: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.8: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 400, τ = 380

Table B.5: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.05915 0.00261 0.00262 0.00254 0.00254 0.00254 0.00254
b22 0.05323 0.05276 0.04970 0.00319 0.00273 0.00264 0.00260
MSE 0.11238 0.05537 0.05232 0.00573 0.00527 0.00517 0.00514

1 2 4 6 8 10 20
b11 0.00253 0.00254 0.00254 0.00254 0.00254 0.00254 0.00254
b22 0.00258 0.00255 0.00255 0.00254 0.00254 0.00254 0.00254
MSE 0.00511 0.00509 0.00508 0.00508 0.00508 0.00508 0.00508

40 60 80 100 200 400 600
b11 0.00254 0.00254 0.00254 0.00254 0.00254 0.00254 0.00254
b22 0.00254 0.00254 0.00254 0.00254 0.00254 0.00254 0.00254
MSE 0.00509 0.00508 0.00509 0.00508 0.00508 0.00508 0.00509

800 1000 TMLE1 TMLE2

b11 0.00255 0.00259 0.00253 0.00254
b22 0.00255 0.00259 0.00340 0.00261
MSE 0.00511 0.00519 0.00593 0.00515
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Figure B.9: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.10: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets

169



Case 1: T = 400, τ = 360

Table B.6: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.02674 0.00261 0.00262 0.00241 0.00240 0.00240 0.00240
b22 0.02688 0.02681 0.02602 0.00327 0.00266 0.00252 0.00247
MSE 0.05362 0.02942 0.02863 0.00568 0.00506 0.00492 0.00487

1 2 4 6 8 10 20
b11 0.00240 0.00240 0.00240 0.00240 0.00240 0.00240 0.00240
b22 0.00245 0.00241 0.00240 0.00240 0.00240 0.00240 0.00240
MSE 0.00485 0.00481 0.00481 0.00480 0.00480 0.00480 0.00480

40 60 80 100 200 400 600
b11 0.00240 0.00240 0.00240 0.00240 0.00240 0.00241 0.00241
b22 0.00240 0.00240 0.00240 0.00240 0.00240 0.00241 0.00241
MSE 0.00480 0.00480 0.00480 0.00480 0.00480 0.00481 0.00482

800 1000 TMLE1 TMLE2

b11 0.00240 0.00242 0.00240 0.00241
b22 0.00240 0.00242 0.00275 0.00250
MSE 0.00480 0.00483 0.00515 0.00490
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Figure B.11: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.12: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 900, τ = 885

Table B.7: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.08477 0.00115 0.00115 0.00115 0.00116 0.00115 0.00115
b22 0.07754 0.07437 0.06909 0.00131 0.00121 0.00118 0.00117
MSE 0.16231 0.07552 0.07025 0.00246 0.00237 0.00233 0.00233

1 2 4 6 8 10 20
b11 0.00115 0.00116 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.00117 0.00116 0.00116 0.00116 0.00115 0.00115 0.00115
MSE 0.00232 0.00232 0.00231 0.00231 0.00231 0.00231 0.00231

40 60 80 100 200 400 600
b11 0.00115 0.00115 0.00116 0.00115 0.00115 0.00115 0.00115
b22 0.00115 0.00115 0.00116 0.00115 0.00115 0.00115 0.00115
MSE 0.00231 0.00231 0.00232 0.00231 0.00230 0.00231 0.00231

800 1000 TMLE1 TMLE2

b11 0.00115 0.00117 0.00115 0.00116
b22 0.00115 0.00117 0.00184 0.00116
MSE 0.00230 0.00235 0.00300 0.00232
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Figure B.13: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.14: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 900, τ = 870

Table B.8: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.03477 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.03519 0.03511 0.03346 0.00141 0.00124 0.00120 0.00118
MSE 0.06997 0.03626 0.03461 0.00255 0.00239 0.00234 0.00233

1 2 4 6 8 10 20
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.00118 0.00116 0.00115 0.00115 0.00115 0.00115 0.00115
MSE 0.00233 0.00231 0.00230 0.00230 0.00230 0.00230 0.00230

40 60 80 100 200 400 600
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
MSE 0.00230 0.00230 0.00231 0.00231 0.00230 0.00230 0.00230

800 1000 TMLE1 TMLE2

b11 0.00119 0.00121 0.00115 0.00115
b22 0.00119 0.00122 0.00144 0.00115
MSE 0.00238 0.00243 0.00259 0.00230
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Figure B.15: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.16: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 900, τ = 840

Table B.9: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.01576 0.00115 0.00115 0.00110 0.00110 0.00110 0.00110
b22 0.01829 0.01826 0.01815 0.00148 0.00123 0.00117 0.00114
MSE 0.03405 0.01941 0.01930 0.00258 0.00233 0.00227 0.00225

1 2 4 6 8 10 20
b11 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110
b22 0.00113 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111
MSE 0.00224 0.00222 0.00221 0.00221 0.00221 0.00221 0.00221

40 60 80 100 200 400 600
b11 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00111
b22 0.00110 0.00110 0.00110 0.00110 0.00110 0.00110 0.00111
MSE 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00222

800 1000 TMLE1 TMLE2

b11 0.00110 0.00110 0.00110 0.00110
b22 0.00110 0.00110 0.00129 0.00113
MSE 0.00221 0.00221 0.00240 0.00224

0

0.
2

0.
4

0.
6

0.
8 1 2 4 6 8 10 20 40 60 80

10
0

20
0

40
0

60
0

80
0

10
00

0

50

100

150

Figure B.17: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets

0

0.
2

0.
4

0.
6

0.
8 1 2 4 6 8 10 20 40 60 80

10
0

20
0

40
0

60
0

80
0

10
00

0

500

1000

Figure B.18: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 1: T = 900, τ = 450

Table B.10: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.00225 0.00115 0.00114 0.00086 0.00082 0.00080 0.00080
b22 0.00218 0.00218 0.00218 0.00108 0.00091 0.00085 0.00083
MSE 0.00443 0.00333 0.00332 0.00194 0.00172 0.00165 0.00162

1 2 4 6 8 10 20
b11 0.00079 0.00079 0.00078 0.00078 0.00078 0.00078 0.00078
b22 0.00081 0.00079 0.00079 0.00078 0.00078 0.00078 0.00078
MSE 0.00160 0.00158 0.00157 0.00157 0.00157 0.00157 0.00157

40 60 80 100 200 400 600
b11 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078
b22 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078
MSE 0.00157 0.00157 0.00157 0.00157 0.00157 0.00157 0.00157

800 1000 TMLE1 TMLE2

b11 0.00078 0.00078 0.00080 0.00081
b22 0.00078 0.00078 0.00084 0.00086
MSE 0.00157 0.00157 0.00164 0.00167
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Figure B.19: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.20: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2

Case 2: T = 100, τ = 95

Table B.11: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 8.89113 0.00954 0.01204 0.01080 0.01081 0.01080 0.01081
b22 9.98371 1.93667 0.44219 0.04405 0.03239 0.02979 0.02859
MSE 18.87483 1.94621 0.45423 0.05485 0.04320 0.04059 0.03940

1 2 4 6 8 10 20
b11 0.01081 0.01074 0.01089 0.01089 0.01066 0.01087 0.01064
b22 0.02793 0.02652 0.02604 0.02581 0.02556 0.02565 0.02542
MSE 0.03874 0.03726 0.03694 0.03671 0.03621 0.03653 0.03606

40 60 80 100 200 400 600
b11 0.01061 0.01061 0.01060 0.01086 0.01061 0.01056 0.01057
b22 0.02532 0.02531 0.02526 0.02549 0.02529 0.02518 0.02520
MSE 0.03593 0.03592 0.03586 0.03635 0.03591 0.03574 0.03577

800 1000 TMLE1 TMLE2

b11 0.01066 0.01054 0.01034 0.01040
b22 0.02526 0.02509 0.02894 0.03074
MSE 0.03592 0.03563 0.03928 0.04113
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Figure B.21: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.22: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 100, τ = 90

Table B.12: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.17309 0.00954 0.00995 0.00933 0.00936 0.00938 0.00939
b22 0.16933 0.15746 0.13164 0.03089 0.02630 0.02506 0.02451
MSE 0.34242 0.16700 0.14159 0.04022 0.03566 0.03443 0.03389

1 2 4 6 8 10 20
b11 0.00939 0.00940 0.00941 0.00941 0.00941 0.00941 0.00941
b22 0.02421 0.02367 0.02344 0.02337 0.02334 0.02332 0.02328
MSE 0.03360 0.03308 0.03285 0.03279 0.03275 0.03273 0.03269

40 60 80 100 200 400 600
b11 0.00941 0.00942 0.00942 0.00941 0.00941 0.00946 0.00941
b22 0.02326 0.02325 0.02325 0.02323 0.02324 0.02330 0.02324
MSE 0.03268 0.03267 0.03267 0.03264 0.03265 0.03276 0.03264

800 1000 TMLE1 TMLE2

b11 0.00945 0.00948 0.00949 0.00929
b22 0.02328 0.02329 0.02462 0.02686
MSE 0.03273 0.03276 0.03411 0.03615
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Figure B.23: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.24: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 100, τ = 80

Table B.13: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.05995 0.00954 0.00988 0.00857 0.00856 0.00857 0.00858
b22 0.06883 0.06819 0.06486 0.02547 0.02234 0.02151 0.02118
MSE 0.12878 0.07773 0.07474 0.03404 0.03090 0.03008 0.02976

1 2 4 6 8 10 20
b11 0.00859 0.00862 0.00863 0.00863 0.00864 0.00864 0.00864
b22 0.02102 0.02080 0.02073 0.02072 0.02072 0.02072 0.02072
MSE 0.02961 0.02942 0.02936 0.02935 0.02935 0.02935 0.02936

40 60 80 100 200 400 600
b11 0.00864 0.00864 0.00864 0.00864 0.00866 0.00864 0.00865
b22 0.02072 0.02072 0.02072 0.02072 0.02074 0.02073 0.02074
MSE 0.02936 0.02936 0.02936 0.02936 0.02940 0.02937 0.02939

800 1000 TMLE1 TMLE2

b11 0.00866 0.00865 0.00850 0.00843
b22 0.02078 0.02071 0.02212 0.02292
MSE 0.02944 0.02936 0.03062 0.03135
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Figure B.25: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.26: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 400, τ = 390

Table B.14: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.17477 0.00261 0.00263 0.00257 0.00257 0.00257 0.00257
b22 0.17075 0.15851 0.12464 0.01422 0.01366 0.01352 0.01346
MSE 0.34552 0.16113 0.12727 0.01679 0.01623 0.01609 0.01603

1 2 4 6 8 10 20
b11 0.00257 0.00257 0.00257 0.00257 0.00257 0.00257 0.00257
b22 0.01342 0.01336 0.01332 0.01332 0.01331 0.01331 0.01331
MSE 0.01599 0.01593 0.01589 0.01589 0.01588 0.01588 0.01588

40 60 80 100 200 400 600
b11 0.00257 0.00258 0.00257 0.00257 0.00258 0.00260 0.00261
b22 0.01331 0.01330 0.01331 0.01331 0.01330 0.01334 0.01342
MSE 0.01588 0.01588 0.01588 0.01588 0.01589 0.01594 0.01602

800 1000 TMLE1 TMLE2

b11 0.00261 0.00259 0.00258 0.00256
b22 0.01337 0.01325 0.01575 0.01405
MSE 0.01598 0.01584 0.01833 0.01661
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Figure B.27: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets

0

0.
2

0.
4

0.
6

0.
8 1 2 4 6 8 10 20 40 60 80

10
0

20
0

40
0

60
0

80
0

10
00

0

200

400

600

800

Figure B.28: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 400, τ = 380

Table B.15: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.05926 0.00261 0.00262 0.00251 0.00251 0.00251 0.00251
b22 0.05498 0.05439 0.05216 0.01283 0.01266 0.01267 0.01269
MSE 0.11425 0.05700 0.05478 0.01534 0.01517 0.01518 0.01520

1 2 4 6 8 10 20
b11 0.00251 0.00251 0.00251 0.00251 0.00251 0.00251 0.00251
b22 0.01268 0.01274 0.01277 0.01278 0.01278 0.01278 0.01279
MSE 0.01519 0.01525 0.01528 0.01529 0.01529 0.01529 0.01530

40 60 80 100 200 400 600
b11 0.00251 0.00251 0.00251 0.00251 0.00251 0.00251 0.00252
b22 0.01279 0.01280 0.01280 0.01280 0.01280 0.01281 0.01282
MSE 0.01530 0.01531 0.01531 0.01531 0.01531 0.01532 0.01534

800 1000 TMLE1 TMLE2

b11 0.00251 0.00252 0.00250 0.00250
b22 0.01280 0.01284 0.01343 0.01323
MSE 0.01532 0.01536 0.01593 0.01573
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Figure B.29: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.30: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 400, τ = 360

Table B.16: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.02675 0.00261 0.00262 0.00238 0.00238 0.00238 0.00238
b22 0.02732 0.02723 0.02660 0.01077 0.01099 0.01119 0.01131
MSE 0.05407 0.02984 0.02921 0.01315 0.01337 0.01356 0.01369

1 2 4 6 8 10 20
b11 0.00238 0.00238 0.00238 0.00238 0.00238 0.00238 0.00238
b22 0.01140 0.01159 0.01170 0.01174 0.01176 0.01178 0.01180
MSE 0.01377 0.01397 0.01408 0.01412 0.01414 0.01416 0.01418

40 60 80 100 200 400 600
b11 0.00238 0.00238 0.00238 0.00238 0.00238 0.00238 0.00238
b22 0.01181 0.01182 0.01182 0.01182 0.01182 0.01183 0.01184
MSE 0.01419 0.01420 0.01420 0.01420 0.01420 0.01421 0.01422

800 1000 TMLE1 TMLE2

b11 0.00239 0.00239 0.00237 0.00238
b22 0.01193 0.01183 0.01156 0.01150
MSE 0.01432 0.01422 0.01394 0.01387
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Figure B.31: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.32: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 900, τ = 885

Table B.17: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.08515 0.00115 0.00115 0.00115 0.00115 0.00115 0.00116
b22 0.08341 0.07968 0.07515 0.01150 0.01134 0.01127 0.01126
MSE 0.16856 0.08083 0.07630 0.01265 0.01249 0.01243 0.01242

1 2 4 6 8 10 20
b11 0.00116 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.01127 0.01125 0.01125 0.01124 0.01124 0.01124 0.01124
MSE 0.01243 0.01240 0.01240 0.01239 0.01239 0.01239 0.01239

40 60 80 100 200 400 600
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00119
b22 0.01124 0.01124 0.01124 0.01124 0.01124 0.01124 0.01124
MSE 0.01239 0.01239 0.01239 0.01239 0.01239 0.01239 0.01243

800 1000 TMLE1 TMLE2

b11 0.00115 0.00115 0.00115 0.00115
b22 0.01125 0.01124 0.01195 0.01125
MSE 0.01239 0.01239 0.01310 0.01240
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Figure B.33: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets

0

0.
2

0.
4

0.
6

0.
8 1 2 4 6 8 10 20 40 60 80

10
0

20
0

40
0

60
0

80
0

10
00

0

200

400

600

Figure B.34: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 900, τ = 870

Table B.18: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.03481 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.03591 0.03580 0.03452 0.01043 0.01059 0.01068 0.01072
MSE 0.07072 0.03695 0.03567 0.01158 0.01174 0.01183 0.01188

1 2 4 6 8 10 20
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.01075 0.01081 0.01084 0.01085 0.01086 0.01086 0.01087
MSE 0.01191 0.01196 0.01199 0.01200 0.01201 0.01201 0.01202

40 60 80 100 200 400 600
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.01086 0.01087 0.01089 0.01088 0.01086 0.01090 0.01092
MSE 0.01201 0.01203 0.01205 0.01204 0.01201 0.01205 0.01207

800 1000 TMLE1 TMLE2

b11 0.00117 0.00118 0.00115 0.00115
b22 0.01089 0.01091 0.01103 0.01088
MSE 0.01206 0.01209 0.01217 0.01203
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Figure B.35: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.36: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 900, τ = 840

Table B.19: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.01577 0.00115 0.00115 0.00112 0.00112 0.00112 0.00113
b22 0.01812 0.01808 0.01810 0.00869 0.00926 0.00952 0.00966
MSE 0.03389 0.01923 0.01926 0.00981 0.01038 0.01064 0.01079

1 2 4 6 8 10 20
b11 0.00113 0.00113 0.00113 0.00113 0.00113 0.00113 0.00113
b22 0.00975 0.00995 0.01005 0.01009 0.01011 0.01012 0.01014
MSE 0.01088 0.01108 0.01118 0.01122 0.01124 0.01125 0.01127

40 60 80 100 200 400 600
b11 0.00113 0.00113 0.00113 0.00113 0.00113 0.00113 0.00117
b22 0.01015 0.01016 0.01016 0.01016 0.01016 0.01016 0.01018
MSE 0.01128 0.01128 0.01129 0.01129 0.01129 0.01129 0.01135

800 1000 TMLE1 TMLE2

b11 0.00113 0.00113 0.00113 0.00113
b22 0.01017 0.01017 0.00993 0.00994
MSE 0.01129 0.01130 0.01106 0.01107
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Figure B.37: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.38: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 2: T = 900, τ = 450

Table B.20: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.00225 0.00115 0.00114 0.00117 0.00136 0.00148 0.00155
b22 0.00210 0.00210 0.00211 0.00235 0.00306 0.00350 0.00380
MSE 0.00435 0.00325 0.00325 0.00353 0.00441 0.00498 0.00535

1 2 4 6 8 10 20
b11 0.00161 0.00174 0.00183 0.00186 0.00187 0.00188 0.00190
b22 0.00401 0.00451 0.00482 0.00493 0.00499 0.00502 0.00510
MSE 0.00561 0.00625 0.00664 0.00679 0.00686 0.00690 0.00700

40 60 80 100 200 400 600
b11 0.00191 0.00191 0.00191 0.00192 0.00192 0.00192 0.00192
b22 0.00513 0.00515 0.00515 0.00516 0.00516 0.00517 0.00517
MSE 0.00704 0.00706 0.00707 0.00707 0.00708 0.00709 0.00709

800 1000 TMLE1 TMLE2

b11 0.00192 0.00192 0.00158 0.00146
b22 0.00517 0.00517 0.00399 0.00351
MSE 0.00709 0.00709 0.00557 0.00498
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Figure B.39: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.40: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3

Case 3: T = 100, τ = 95

Table B.21: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 9.88110 0.00954 0.01217 0.01100 0.01090 0.01093 0.01096
b22 11.09923 2.16042 0.47232 0.08182 0.06912 0.06579 0.06439
MSE 20.98034 2.16996 0.48449 0.09282 0.08002 0.07673 0.07535

1 2 4 6 8 10 20
b11 0.01102 0.01111 0.01151 0.01112 0.01113 0.01115 0.01143
b22 0.06367 0.06184 0.06119 0.06078 0.06066 0.06057 0.06053
MSE 0.07469 0.07296 0.07269 0.07190 0.07179 0.07172 0.07196

40 60 80 100 200 400 600
b11 0.01113 0.01110 0.01107 0.01112 0.01105 0.01135 0.01142
b22 0.06032 0.06022 0.06036 0.06026 0.06007 0.06021 0.06018
MSE 0.07145 0.07132 0.07143 0.07138 0.07112 0.07157 0.07160

800 1000 TMLE1 TMLE2

b11 0.01095 0.01103 0.01045 0.01059
b22 0.06001 0.06001 0.06127 0.06653
MSE 0.07096 0.07103 0.07172 0.07712
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Figure B.41: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Figure B.42: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets

185



Case 3: T = 100, τ = 90

Table B.22: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.17185 0.00954 0.01000 0.00920 0.00923 0.00925 0.00926
b22 0.18383 0.17133 0.14769 0.06053 0.05692 0.05604 0.05570
MSE 0.35568 0.18087 0.15768 0.06973 0.06615 0.06530 0.06496

1 2 4 6 8 10 20
b11 0.00928 0.00928 0.00930 0.00929 0.00929 0.00929 0.00929
b22 0.05555 0.05524 0.05518 0.05512 0.05511 0.05510 0.05509
MSE 0.06482 0.06452 0.06448 0.06441 0.06440 0.06439 0.06438

40 60 80 100 200 400 600
b11 0.00929 0.00929 0.00929 0.00929 0.00929 0.00932 0.00950
b22 0.05508 0.05508 0.05508 0.05508 0.05508 0.05513 0.05534
MSE 0.06437 0.06437 0.06438 0.06438 0.06437 0.06444 0.06484

800 1000 TMLE1 TMLE2

b11 0.00927 0.00930 0.00932 0.00906
b22 0.05499 0.05502 0.05317 0.05793
MSE 0.06426 0.06431 0.06249 0.06699
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Figure B.43: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.44: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 100, τ = 80

Table B.23: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.05993 0.00954 0.00989 0.00843 0.00845 0.00848 0.00851
b22 0.07183 0.07123 0.06992 0.04440 0.04431 0.04484 0.04528
MSE 0.13176 0.08077 0.07981 0.05283 0.05276 0.05333 0.05379

1 2 4 6 8 10 20
b11 0.00852 0.00856 0.00859 0.00859 0.00861 0.00860 0.00861
b22 0.04561 0.04646 0.04699 0.04719 0.04730 0.04734 0.04746
MSE 0.05414 0.05502 0.05557 0.05579 0.05591 0.05594 0.05607

40 60 80 100 200 400 600
b11 0.00861 0.00861 0.00861 0.00861 0.00861 0.00861 0.00861
b22 0.04753 0.04755 0.04756 0.04756 0.04758 0.04759 0.04758
MSE 0.05614 0.05616 0.05617 0.05618 0.05619 0.05620 0.05619

800 1000 TMLE1 TMLE2

b11 0.00861 0.00864 0.00827 0.00823
b22 0.04765 0.04771 0.04481 0.04646
MSE 0.05626 0.05635 0.05308 0.05469
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Figure B.45: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.46: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 400, τ = 390

Table B.24: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.17293 0.00261 0.00263 0.00256 0.00256 0.00255 0.00255
b22 0.18143 0.16863 0.13645 0.04345 0.04337 0.04337 0.04340
MSE 0.35436 0.17125 0.13909 0.04601 0.04592 0.04593 0.04596

1 2 4 6 8 10 20
b11 0.00255 0.00255 0.00255 0.00255 0.00255 0.00255 0.00255
b22 0.04342 0.04345 0.04347 0.04348 0.04348 0.04348 0.04349
MSE 0.04598 0.04600 0.04602 0.04603 0.04603 0.04604 0.04604

40 60 80 100 200 400 600
b11 0.00255 0.00256 0.00255 0.00257 0.00258 0.00258 0.00257
b22 0.04350 0.04348 0.04347 0.04346 0.04352 0.04355 0.04378
MSE 0.04605 0.04605 0.04602 0.04603 0.04609 0.04614 0.04634

800 1000 TMLE1 TMLE2

b11 0.00260 0.00261 0.00257 0.00254
b22 0.04354 0.04381 0.04317 0.04395
MSE 0.04613 0.04642 0.04574 0.04649
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Figure B.47: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.48: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 400, τ = 380

Table B.25: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.05937 0.00261 0.00262 0.00251 0.00251 0.00251 0.00251
b22 0.05647 0.05580 0.05584 0.03783 0.03943 0.04008 0.04044
MSE 0.11585 0.05841 0.05846 0.04034 0.04194 0.04259 0.04295

1 2 4 6 8 10 20
b11 0.00251 0.00251 0.00251 0.00251 0.00251 0.00251 0.00251
b22 0.04066 0.04112 0.04136 0.04144 0.04149 0.04151 0.04156
MSE 0.04317 0.04363 0.04387 0.04395 0.04400 0.04402 0.04407

40 60 80 100 200 400 600
b11 0.00251 0.00251 0.00251 0.00251 0.00251 0.00251 0.00252
b22 0.04159 0.04159 0.04160 0.04160 0.04161 0.04163 0.04171
MSE 0.04410 0.04410 0.04411 0.04411 0.04412 0.04414 0.04422

800 1000 TMLE1 TMLE2

b11 0.00253 0.00250 0.00250 0.00249
b22 0.04170 0.04170 0.04005 0.04163
MSE 0.04423 0.04419 0.04255 0.04412
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Figure B.49: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.50: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 400, τ = 360

Table B.26: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.02678 0.00261 0.00262 0.00245 0.00247 0.00248 0.00248
b22 0.02751 0.02741 0.02739 0.02968 0.03303 0.03449 0.03530
MSE 0.05429 0.03002 0.03001 0.03213 0.03550 0.03697 0.03779

1 2 4 6 8 10 20
b11 0.00249 0.00249 0.00250 0.00250 0.00250 0.00250 0.00250
b22 0.03582 0.03691 0.03749 0.03769 0.03779 0.03785 0.03797
MSE 0.03830 0.03940 0.03999 0.04019 0.04029 0.04035 0.04047

40 60 80 100 200 400 600
b11 0.00250 0.00250 0.00250 0.00250 0.00250 0.00251 0.00258
b22 0.03803 0.03805 0.03806 0.03807 0.03808 0.03808 0.03823
MSE 0.04053 0.04055 0.04057 0.04057 0.04059 0.04059 0.04081

800 1000 TMLE1 TMLE2

b11 0.00254 0.00252 0.00246 0.00247
b22 0.03809 0.03822 0.03566 0.03526
MSE 0.04062 0.04074 0.03812 0.03773
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Figure B.51: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.52: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 900, τ = 885

Table B.27: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.08552 0.00115 0.00115 0.00115 0.00116 0.00115 0.00116
b22 0.08937 0.08518 0.08354 0.04015 0.04044 0.04058 0.04066
MSE 0.17489 0.08633 0.08469 0.04130 0.04160 0.04173 0.04182

1 2 4 6 8 10 20
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.04072 0.04080 0.04085 0.04086 0.04087 0.04088 0.04089
MSE 0.04187 0.04195 0.04200 0.04202 0.04203 0.04203 0.04204

40 60 80 100 200 400 600
b11 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115 0.00115
b22 0.04089 0.04089 0.04089 0.04089 0.04091 0.04088 0.04090
MSE 0.04204 0.04204 0.04205 0.04205 0.04206 0.04203 0.04205

800 1000 TMLE1 TMLE2

b11 0.00116 0.00115 0.00115 0.00116
b22 0.04089 0.04091 0.04073 0.04086
MSE 0.04205 0.04207 0.04188 0.04201
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Figure B.53: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.54: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 900, τ = 870

Table B.28: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.03486 0.00115 0.00115 0.00116 0.00117 0.00117 0.00117
b22 0.03641 0.03627 0.03614 0.03590 0.03757 0.03818 0.03852
MSE 0.07126 0.03742 0.03730 0.03706 0.03873 0.03935 0.03969

1 2 4 6 8 10 20
b11 0.00117 0.00117 0.00117 0.00117 0.00117 0.00117 0.00117
b22 0.03869 0.03912 0.03931 0.03938 0.03942 0.03944 0.03951
MSE 0.03986 0.04028 0.04048 0.04055 0.04059 0.04061 0.04068

40 60 80 100 200 400 600
b11 0.00117 0.00117 0.00117 0.00117 0.00117 0.00117 0.00117
b22 0.03950 0.03953 0.03959 0.03953 0.03953 0.03962 0.03959
MSE 0.04067 0.04070 0.04076 0.04070 0.04070 0.04079 0.04076

800 1000 TMLE1 TMLE2

b11 0.00121 0.00118 0.00117 0.00117
b22 0.03965 0.03967 0.03878 0.03952
MSE 0.04086 0.04085 0.03994 0.04069
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Figure B.55: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.56: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 900, τ = 840

Table B.29: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.01578 0.00115 0.00115 0.00119 0.00121 0.00121 0.00122
b22 0.01775 0.01771 0.01809 0.02913 0.03251 0.03385 0.03456
MSE 0.03353 0.01886 0.01924 0.03032 0.03372 0.03506 0.03578

1 2 4 6 8 10 20
b11 0.00122 0.00122 0.00123 0.00123 0.00123 0.00123 0.00123
b22 0.03501 0.03593 0.03641 0.03657 0.03666 0.03671 0.03681
MSE 0.03622 0.03715 0.03764 0.03780 0.03788 0.03793 0.03803

40 60 80 100 200 400 600
b11 0.00123 0.00123 0.00123 0.00123 0.00123 0.00123 0.00123
b22 0.03686 0.03687 0.03688 0.03689 0.03690 0.03691 0.03692
MSE 0.03808 0.03810 0.03811 0.03811 0.03812 0.03813 0.03815

800 1000 TMLE1 TMLE2

b11 0.00123 0.00123 0.00122 0.00123
b22 0.03691 0.03691 0.03522 0.03551
MSE 0.03814 0.03814 0.03644 0.03674
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Figure B.57: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.58: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Case 3: T = 900, τ = 450

Table B.30: MSE of point estimates of b11 and b22

1SMLE 2SQMLE 0 0.2 0.4 0.6 0.8
b11 0.00225 0.00115 0.00114 0.00218 0.00310 0.00365 0.00401
b22 0.00199 0.00199 0.00200 0.00591 0.00912 0.01103 0.01227
MSE 0.00424 0.00314 0.00314 0.00809 0.01222 0.01468 0.01628

1 2 4 6 8 10 20
b11 0.00425 0.00484 0.00519 0.00532 0.00539 0.00543 0.00551
b22 0.01314 0.01520 0.01645 0.01690 0.01714 0.01728 0.01757
MSE 0.01739 0.02005 0.02164 0.02222 0.02252 0.02270 0.02308

40 60 80 100 200 400 600
b11 0.00555 0.00556 0.00557 0.00558 0.00558 0.00559 0.00559
b22 0.01772 0.01777 0.01779 0.01781 0.01784 0.01785 0.01786
MSE 0.02327 0.02333 0.02336 0.02338 0.02342 0.02344 0.02345

800 1000 TMLE1 TMLE2

b11 0.00559 0.00559 0.00325 0.00241
b22 0.01786 0.01787 0.01009 0.00666
MSE 0.02345 0.02346 0.01334 0.00906
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Figure B.59: The bar chart of λ determined by the fixed-design wild bootstrap
for 1000 simulated datasets
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Figure B.60: The bar chart of λ determined by the TMLE bootstrap for 1000
simulated datasets
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Empirical application

Incremental window
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(a) Fix-design wild boot-
strap
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(b) TMLE bootstrap

Figure B.61: The bar charts of λ determined by two bootstrap proceures for 21
incremental windows

Rolling window
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(a) T − τ = 10
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(b) T − τ = 20
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(c) T − τ = 30
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(d) T − τ = 10
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(e) T − τ = 20
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(f) T − τ = 30

Figure B.62: Bar charts of λ determined by the fixed-design bootstrap (a-c) and
TMLE bootstrap (d-f) for 100 rolling windows
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