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Abstract

For a finite ground set V , we call a set-function r : 2V → Z+ monotone, if r(X ′) ≥
r(X) holds for each X ′ ⊆ X ⊆ V , where Z+ is the set of nonnegative integers.
Given an undirected multigraph G = (V,E) and a monotone requirement function
r : 2V → Z+, we consider the problem of augmenting G by a smallest number of new
edges so that the resulting graph G′ satisfies dG′(X) ≥ r(X) for each ∅ 6= X ⊂ V ,
where dG(X) denotes the degree of a vertex set X in G. This problem includes
the edge-connectivity augmentation problem, and in general, it is NP-hard even if a
polynomial time oracle for r is available. In this paper, we show that the problem can
be solved in O(n4(m+n log n+q)) time, under the assumption that each ∅ 6= X ⊂ V

satisfies r(X) ≥ 2 whenever r(X) > 0, where n = |V |, m = |{{u, v} | (u, v) ∈ E}|,
and q is the time required to compute r(X) for each X ⊆ V .

Key words: undirected graph, connectivity augmentation problem, monotone
requirement, polynomial time deterministic algorithm

1 Introduction

In a communication network, graph connectivity is a fundamental measure of
its robustness. The connectivity augmentation problems have been extensively
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studied as an important subject in the network design problem [5] and so on,
and many efficient algorithms have been developed so far (see [3,9] for surveys).

Let G = (V, E) be an undirected multigraph and dG(X) be the number of
edges between X and V − X in G. A graph G = (V, E) is k-edge-connected
if every set ∅ 6= X ⊂ V satisfies dG(X) ≥ k. We consider the following
problem of augmenting a given graph to meet the required edge-connectivity
(RECAP): given a graph G = (V, E) and a nonnegative integer set-function
r : 2V → Z+ where Z+ denotes the set of nonnegative integers, add a smallest
number of new edges F so that the augmented graph G + F = (V, E ∪ F )
satisfies dG+F (X) ≥ r(X) for every ∅ 6= X ⊂ V . This formulation includes the
edge-connectivity augmentation problem (ECAP), the local edge-connectivity

augmentation problem (LECAP), the node-to-area edge-connectivity augmen-

tation problem (NAECAP), and so on.

Let us briefly survey the developments in the edge-connectivity augmentation
problems. ECAP is equivalent to RECAP in the case where every ∅ 6= X ⊂ V
satisfies r(X) = k for a given integer k ∈ Z+. Watanabe and Nakamura [13]
showed that it is polynomially solvable. The fastest known algorithm for it
achieves complexity O(mn+n2 log n) due to Nagamochi [10,11], where n = |V |
and m = |{{u, v} | u, v ∈ V }|.

In LECAP, we are given a local edge-connectivity requirement function r′(u, v)
∈ Z+ on the set of pairs of vertices u and v, and hence the function r in RE-
CAP is regarded as r(X) = max{r′(u, v) | u ∈ X, v ∈ V − X}. Clearly,
LECAP includes ECAP as a special case. Frank [2] showed that it is polyno-
mially solvable. The fastest known algorithm, proposed by Gabow [4], runs in
O(n2m log (n2/m)) time.

In NAECAP, we are given a family W of specified vertex subsets called areas

and a requirement function r′(W ) on the family of areas W ∈ W, and asked
to augment G so that the edge-connectivity between each pair of W ∈ W
and v ∈ V − W becomes at least r′(W ); in the augmented graph G′, every
set ∅ 6= X ⊂ V is required to satisfy dG′(X) ≥ r′(W ) for each area W ∈ W
with W ∩ X = ∅ or W ⊆ X. Hence, the function r in RECAP is regarded as
r(X) = max{r′(W ) | W ∩ X = ∅, or W ⊆ X}. NAECAP is also an extension
of ECAP, because if r′(W ) = k holds for each area W ∈ W and some area
W ′ ∈ W satisfies |W ′| = 1, then the function r satisfies r(X) = k. Miwa and
Ito [8] showed that even if r′(W ) = 1 holds for every area W ∈ W, NAECAP
is NP-hard. On the other hand, Ishii and Hagiwara [6] showed that the case
where r′(W ) ≥ 2 for every area W ∈ W can be solved in O(n3|W|(m+n log n))
time.

More generally, RECAP can be extended to a problem of covering a given
nonnegative integer set-function p : 2V → Z+ by a smallest number of graph
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edges, where we say that an edge set F covers p if d(V,F )(X) ≥ p(X) for every
X ⊆ V . The p in RECAP is regarded as p(X) = max{0, max{r(X), r(V −
X)} − dG(X)} (note that the degree of each set ∅ 6= X ⊂ V needs to be
augmented up to max{r(X), r(V − X)} since G is undirected). Benczúr and
Frank [1] showed that if p is a symmetric supermodular set-function, then such
a problem of covering p can be solved in polynomial time, where p : 2V → Z+

is symmetric if p(X) = p(V − X) for every X ⊆ V , and p is (crossing)
supermodular if p(∅) = 0 and

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (1.1)

for every X, Y ⊆ V with p(X) > 0, p(Y ) > 0 and X ∩ Y 6= ∅ 6= V − (X ∪ Y ).
Since −dG is symmetric supermodular, ECAP is a special case of this problem.

On the other hand, the functions p defined in LECAP and NAECAP are not
symmetric supermodular, but symmetric skew-supermodular, as observed in
[2] and [6], respectively, where p : 2V → Z+ is skew-supermodular if p(∅) = 0,
and at least one of (1.1) and

p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X) (1.2)

holds for every X, Y ⊆ V with p(X) > 0 and p(Y ) > 0. Note that the problem
of covering symmetric skew-supermodular functions is NP-hard since so is
NAECAP. Recently, Nutov [12] proved that this problem is APX-hard and
7/4-approximable in polynomial time under the assumption that a polynomial
time oracle for minX⊆V {

∑

v∈X g(v) + d(V,F )(X) − p(X)} is available, where
g : V → Z+ is a function on V and F denotes a set of edges on V (note that
such an oracle for a supermodular function p is always available as pointed in
[1]). Some other problems as the element-connectivity augmentation problem

(ELCAP) are also included in this problem as its special case, and ELCAP
was shown to be NP-hard even if r ∈ {0, 2} [7,12]. It remains a challenging
question which type of the problem of covering symmetric skew-supermodular
functions is polynomially solvable or not.

In this paper, we consider the edge-connectivity augmentation problem with

monotone requirements (MECAP), which is RECAP with a monotone function
r, where r : 2V → Z+ is monotone if r(X ′) ≥ r(X) holds for every two sets
X ′, X ⊆ V with ∅ 6= X ′ ⊆ X. NAECAP with W and r′ : W → Z+ is
equivalent to MECAP with r′′, where r′′(X) = max{r′(W ) | W ∩ X = ∅}
for each ∅ 6= X ⊂ V . Indeed, the function r′′ is monotone and the function
r in NAECAP satisfies r(X) = max{r′′(X), r′′(V − X)}. On the other hand,
MECAP with r is equivalent to NAECAP with W = {W ⊂ V | r(V −W ) > 0}
and r′(W ) = r(V − W ), W ∈ W. Indeed, for each ∅ 6= X ⊂ V , we have
max{r′(W ) | W ∩ X = ∅, W ∈ W} = r(X) by the monotonicity of r. In this

3



sense, we may say that MECAP is a reformulation of NAECAP. It follows
that the function p defined in MECAP is symmetric skew-supermodular and
MECAP is NP-hard in general. However, the method of applying Ishii and
Hagiwara’s algorithm [6] to NAECAP with W = {W ⊂ V | r(V − W ) > 0}
and r′(W ) = r(V − W ), W ∈ W is not a polynomial time one for MECAP,
because their algorithm depends on the number of areas and |{W ⊂ V |
r(V − W ) > 0}| may be exponential in n and m. In this paper, we propose
an algorithm for solving MECAP in O(n4(m + n log n + q)) time, under the
assumption that each ∅ 6= X ⊂ V satisfies r(X) ≥ 2 whenever r(X) > 0,
where q is the time required to compute r(X) for each X ⊆ V ; this gives rise
to a polynomial time algorithm under the assumption that q is polynomial in
the input size of the problem. In NAECAP with W and r′, we have r(X) =
max{r′(W ) | W ∩ X = ∅}, and hence r(X) can be computed in O(|X| +
∑

W∈W |W |) time; our algorithm is a polynomial time one also for NAECAP
under the assumption that r′(W ) ≥ 2 holds for each W ∈ W. Moreover, its
time complexity improves Ishii and Hagiwara’s one [6] in some case; e.g., in
the case of n = o(|W|) and

∑

W∈W |W | = O(m + n log n).

The paper is organized as follows. In Section 2, we define MECAP, after in-
troducing some basic notations. In Section 3, we derive lower bounds on the
optimal value to MECAP, and state our main result that MECAP is polyno-
mially solvable under the assumption that r(X) ≥ 2 holds for every X ⊆ V
whenever r(X) > 0. In Section 4, we introduce the so-called edge-splitting
operation, and give an algorithm for solving MECAP, based on these lower
bounds and the edge-splitting operation. In Section 5, we prove the correctness
of the algorithm. In Section 6, we give concluding remarks.

2 Problem Definition

Let G = (V, E) stand for an undirected graph with a set V of vertices and a
set E of edges. An edge with end vertices u and v is denoted by (u, v). We
denote |V | by n (or by n(G)) and |{{u, v}|(u, v) ∈ E}| by m (or by m(G)).
A singleton set {x} may be simply written as x, and “ ⊂ ” implies proper
inclusion while “ ⊆ ” means “ ⊂ ” or “ = ”. In G = (V, E), its vertex set V
and edge set E may be denoted by V (G) and E(G), respectively. A maximal
connected subgraph G′ in a graph G is called a component of G (for notational
convenience, a component H may be represented by its vertex set X = V (H)).
For a subset V ′ ⊆ V in G, the subgraph induced by V ′ is denoted by G[V ′] or
G − (V − V ′). For an edge set E ′ with E ′ ∩E = ∅, we denote the augmented
graph (V, E ∪ E ′) by G + E ′. For an edge set E ′, we denote by V [E ′] the set
of all end vertices of edges in E ′.

For two disjoint subsets X, Y ⊂ V of vertices, we denote by EG(X, Y ) the set
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of edges e = (x, y) such that x ∈ X and y ∈ Y , and also denote |EG(X, Y )| by
dG(X, Y ). In particular, dG(X, V − X) may be written as dG(X). Moreover,
we define dG(∅) = dG(V ) = 0. For two sets X, Y ⊆ V in a graph G = (V, E),
we say that X and Y intersect each other in G if none of X ∩ Y , X − Y ,
Y −X is empty. For a graph G = (V, E), every two sets X, Y ⊂ V satisfy the
following equalities.

dG(X) + dG(Y )= dG(X ∩ Y ) + dG(X ∪ Y ) + 2dG(X − Y, Y − X). (2.1)

dG(X) + dG(Y )= dG(X − Y ) + dG(Y − X)

+2dG(X ∩ Y, V −(X ∪ Y )). (2.2)

Given a ground set V , a set-function r : 2V → Z+ is called monotone if
r(X ′) ≥ r(X) holds for each set X, X ′ with ∅ 6= X ′ ⊆ X ⊆ V . In this paper,
we consider the following connectivity augmentation problem with monotone
requirements.

Problem 1 (Edge-connectivity augmentation problem with monotone require-
ments, MECAP)
Input: An undirected graph G = (V, E) and a monotone function r : 2V → Z+.

Output: A set E∗ of new edges with the minimum cardinality such that each

set ∅ 6= X ⊂ V satisfies dG+E∗(X) ≥ r(X). 2

We call a set X ⊆ V r-maximal if r(X) > 0 and r(X ′) = 0 holds for each set
X ′ ⊃ X. Let R denote the family of r-maximal subsets of V . A set ∅ 6= X ⊂ V
is called proper if X ⊆ M or V − X ⊆ M for some M ∈ R. Let A (resp. B)
denote the family of proper sets X such that X (resp. V − X) is contained
in some r-maximal set (note that some proper set may belong to both of A
and B). Also notice that if X is in A, then X ′ ⊆ X is also in A; if X is
in B, then X ′ with X ⊂ X ′ ⊂ V is also in B. From the symmetry of dG, a
set F of edges is feasible to MECAP if and only if all proper sets X satisfy
dG+F (X) ≥ R(X), where R(X) = max{r(X), r(V − X)}. For a set-function
p′ : 2V → Z+, we say that an edge set E ′ covers p′ if d(V,E′)(X) ≥ p′(X) for
each set X ⊆ V . We remark that a set E ′ of edges is feasible to MECAP if
and only if E ′ covers p, where

p(X) = max{0, R(X) − dG(X)} for every set ∅ 6= X ⊂ V ,

and p(∅) = p(V ) = 0.

As mentioned in Section 1, p is symmetric skew-supermodular. We here give
its proof for completing the paper.

Lemma 2 Let r : 2V → Z+ be a monotone set-function on V . Then p is

symmetric skew-supermodular. 2
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Let A∗ (resp. B∗) denote the family of proper sets X in A (resp. B) with
r(X) ≥ r(V −X) (resp. r(X) ≤ r(V −X)). Note that each proper set belongs
to A∗ or B∗ and that X ∈ A∗ if and only if V −X ∈ B∗. By the monotonicity
of r, it is not difficult to see the following properties.

Lemma 3 Let r : 2V → Z+ be a monotone set-function on V and X be a

proper subset in G = (V, E).
(i) If X ∈ A∗, then any set ∅ 6= X ′ ⊆ X belongs to A and R(X ′) ≥ r(X ′) ≥
R(X).
(ii) If X ∈ B∗, then any set V ⊃ X ′ ⊇ X belongs to B and R(X ′) ≥ r(V −
X ′) ≥ R(X). 2

PROOF of Lemma 2: Clearly, p is symmetric by the symmetry of dG and
R. Since dG satisfies both of (2.1) and (2.2), it suffices to show that R is skew-
supermodular. For this, we show that every two intersecting proper subsets
X, Y of V with p(X), p(Y ) > 0 satisfy the followings (note that the cases of
X ⊆ Y or X ∩ Y = ∅ clearly satisfy (1.1) or (1.2)):

If (a) X, Y ∈ A∗, (b) X, Y ∈ B∗, or (c) X ∈ A∗, Y ∈ B∗, and

V = X ∪ Y , then R(X) + R(Y ) ≤ R(X − Y ) + R(Y − X).
(2.3)

If X ∈ A∗, Y ∈ B∗, V 6= X ∪ Y , then

R(X) + R(Y ) ≤ R(X ∩ Y ) + R(X ∪ Y ).
(2.4)

In the case of (a) (resp. (b)), Lemma 3(i) implies that R(X−Y ) ≥ r(X−Y ) ≥
R(X) and R(Y − X) ≥ r(Y − X) ≥ R(Y ) (resp. R(Y − X) ≥ r(Y − X) ≥
R(V − X) = R(X) and R(X − Y ) ≥ r(X − Y ) ≥ R(V − Y ) = R(Y ) from
V −X, V −Y ∈ A∗), implying (2.3). In the case of (c), R(X−Y ) = R(V −Y ) =
R(Y ) and R(Y −X) = R(V −X) = R(X) imply (2.3). In the remaining case,
we have R(X ∩ Y ) ≥ R(X) (resp. R(X ∪ Y ) ≥ R(Y ) ) by Lemma 3(i) (resp.
by Lemma 3(ii) and V 6= X ∪ Y ), which implies (2.4). 2

3 Lower Bound on the Optimal Value

For a graph G and a fixed function r : 2V → Z+, let opt(G, r) denote the
optimal value to MECAP in G, i.e., the minimum size |E∗| of a set E∗ of new
edges which covers p. In this section, we derive lower bounds on opt(G, r) to
MECAP with G and r.

A family X = {X1, . . . , Xt} of nonempty vertex sets in G = (V, E) is called
a subpartition of V , if every two sets Xi, Xj ∈ X satisfy Xi ∩ Xj = ∅. If X is
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proper, then it is necessary to add at least p(X) edges between X and V −X.
Let

α(G, r) = max
X

{

∑

X∈X

p(X)
}

, (3.1)

where the maximization is taken over all subpartitions of V . Then any feasible
solution to MECAP with G and r must contain an edge which joins two
vertices from a set X with p(X) > 0 and the set V −X. Therefore we see the
following property.

Remark 4 opt(G, r) ≥ ⌈α(G, r)/2⌉ holds. 2

We remark that there is an instance with opt(G, r) > ⌈α(G, r)/2⌉. Figure 1
gives an instance where R = {M1, M2, M3} and all proper sets X satisfies
R(X) = 2. Each set {vi}, i = 1, 2, 3, 4, 5 is proper, p(vi) = 2 − dG(vi) = 1 for
i = 1, 2, 3, 5 and p(v4) = 2 − dG(v4) = 2. It is not hard to see that in (3.1)
the maximum is achieved for the subpartition {{v1}, {v2}, {v3}, {v4}, {v5}}
and ⌈α(G, r)/2⌉ = 3. In order to obtain a feasible solution of three edges, we
must add E ′ = {(v1, v2), (v3, v4), (v4, v5)} or E ′ = {(v1, v4), (v2, v4), (v3, v5)}
without loss of generality. In both cases, E ′ is infeasible because the proper
set X satisfies dG+E′(X) = 1 for X = M1 − {v4, v5} in the former case and
X = M1 −{v5} in the latter case. We will show that all such instances can be

Fig. 1. Illustration of a graph G with opt(G, r) > ⌈α(G,r)
2 ⌉.

completely characterized.

Definition 5 We say that a graph G has property (P) if there is a subpartition

X of V with
∑

X∈X p(X) = α(G, r) satisfying the following conditions (P1)–
(P3) :

(P1) α(G, r) is even.

(P2) There is a set X∗ ∈ X with p(X∗) = 1.

(P3) Let X1 denote the family of proper sets X ∈ X with dG(X) = 0 and

p(X) = 2. For each X ∈ X −X1 −{X∗}, there is a set YX ∈ B∗ such that the
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following (i)–(iv) hold: (i) X ∪X∗ ⊆ YX, (ii) V −YX − (∪X′′∈X1
X ′′) 6= ∅, (iii)

∑

X′∈X ,X′⊂YX
p(X ′) ≤ p(YX) + 1, and (iv) every set X ′ ∈ X satisfies X ′ ⊂ YX

or X ′ ∩ YX = ∅. 2

Note that G in Figure 1 has property (P) because α(G, r) = 6 holds and the
subpartition X = {X∗ = {v5}, X1 = {v1}, X2 = {v2}, X3 = {v3}, X4 = {v4}}
of V satisfies X1 = {X4}, YX1

= (V −M2)∪{v5}, YX2
= (V −M3)∪{v5}, and

YX3
= (V − M1) ∪ {v5}.

Lemma 6 If G has property (P), then opt(G, r) ≥ ⌈α(G, r)/2⌉ + 1.

PROOF. Assume by contradiction that G has property (P) and there is an
edge set E∗ with |E∗| = α(G, r)/2 such that E∗ covers p (note that α(G, r)
is even by the property (P1)). Let X = {X1, . . . , Xt} denote a subpartition
of V satisfying

∑

X∈X p(X) = α(G, r), p(X) > 0 for each X ∈ X , and the
above (P2) and (P3). Since |E∗| = α(G, r)/2 holds, each set X ∈ X satisfies
dG′(X) = p(X), where G′ = (V, E∗). Therefore, any edge (x, x′) ∈ E∗ satisfies
x ∈ X and x′ ∈ X ′ for some two sets X, X ′ ∈ X with X 6= X ′. Hence
∑

v∈X′′ dG′(v) = dG′(X ′′) for X ′′ ∈ X . From this, there exists a set X1 ∈
X−{X∗} with EG′(X∗, X1) 6= ∅. Now note that X−X1−{X∗} 6= ∅ holds since
otherwise α(G, r) = 2|X1| + 1 by the properties (P2) and (P3), contradicting
that α(G, r) is even.

Assume that X1 ∈ X − X1 holds. Since G satisfies property (P), there is a
set YX1

∈ B∗ which satisfies (P3), and hence
∑

v∈YX1
dG′(v) =

∑

X′∈X ,X′⊂YX1

dG′(X ′) =
∑

X′∈X ,X′⊂YX1
p(X ′) ≤ p(YX1

) + 1. Since G′[YX1
] contains one edge

in EG′(X1, X
∗), the proper set YX1

satisfies dG′(YX1
) ≤ (

∑

v∈YX1
dG′(v))− 2 ≤

p(YX1
) − 1, which contradicts that E∗ covers p.

Assume that X1 ∈ X1. From the properties (P2) and (P3), we have dG′(X∗ ∪
X1) = 1, and this implies that there exists an edge e ∈ E∗ connecting X1

and some set in X − {X∗, X1}. Let X ′
1 = {X∗, X1, X2, . . . , Xt′ , Xt′+1} be the

family of sets in X such that we have Xi ∈ X1 for each i = 1, 2, . . . , t′ and
Xt′+1 ∈ X − X1 and EG′(Xi, Xi+1) 6= ∅ for each i = 1, . . . , t′ (note that such
Xt′+1 exists by X −X1−{X∗} 6= ∅). Note that such X ′

1 is determined uniquely
by

dG′(X∗) = 1 and dG′(X) = 2 for each X ∈ X1. (3.2)

From the definition of property (P), there is a set YX
t′+1

∈ B∗ satisfying (P3)
for Xt′+1. Let Yt′+1 = YX

t′+1
∪(∪X∈X ′

1
X). Since we have Yt′+1 ⊇ YX

t′+1
∈ B∗ and

V − YX
t′+1

− (∪X∈X1
X) 6= ∅ (by the property (P3)), Lemma 3(ii) implies that

Yt′+1 is also proper and R(Yt′+1) ≥ R(YX
t′+1

). Note that dG(Yt′+1) = dG(YX
t′+1

)
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by dG(X) = 0 for each X ∈ X1. It follows that p(Yt′+1) ≥ p(YX
t′+1

). Thus, we
have

∑

v∈Y
t′+1

dG′(v) ≤ (p(Yt′+1) + 1) + 2t′ (3.3)

by
∑

v∈YX
t′+1

dG′(v) ≤ p(YX
t′+1

) + 1, (3.2), and p(Yt′+1) ≥ p(YX
t′+1

). Also by

(3.2), we can observe that each edge in E∗ incident to (∪X∈X ′

1
−{X

t′+1}
X) is

contained in E(G′[Yt′+1]); E(G′[Yt′+1]) contains at least t′ + 1 edges in E∗.
From (3.3) and this, we have dG′(Yt′+1) ≤ (p(Yt′+1) + 1) + 2t′ − 2(t′ + 1)
= p(Yt′+1) − 1. Thus this contradicts that E∗ covers p. 2

In this paper, we prove that MECAP enjoys the following min-max theorem.

Theorem 7 Let G = (V, E) be an undirected graph and r : 2V → Z+ be a

monotone set-function on V such that r(X) ≥ 2 holds whenever r(X) > 0.
Then, for MECAP, opt(G, r) = ⌈α(G, r)/2⌉ holds if G does not have property

(P ), and opt(G, r) = ⌈α(G, r)/2⌉ + 1 holds otherwise. Moreover, a solution

E∗ with |E∗| = opt(G, r) can be obtained in O(n4(m + n log n + q)) time. 2

4 Edge-Splittings and Algorithm

4.1 Extensions

We adapt the so-called “edge-splitting” method for solving MECAP, which
is known to be useful for solving connectivity augmentation problems [2]. In
the edge-splitting method, after creating a new vertex s outside of G and
adding new edges between s and G, we find an appropriate edge set to be
added to G by splitting off a pair of edges incident to s in the extended
graph. Given a graph G = (V, E) and a function r : 2V → Z+ on V , a graph
H = (V ∪ {s}, E ∪F ) obtained from G by adding a new vertex s and a set F
of new edges connecting s and V is called a p-extension of G if

all sets X ⊆ V satisfy dH(s, X) ≥ p(X). (4.1)

In particular, a p-extension H = (V ∪ {s}, E ∪ F ) of G is called critical

if (V ∪ {s}, E ∪ F ′) violates (4.1) for any F ′ ⊂ F . In [2,12], it was shown
that if p is symmetric skew-supermodular, then any critical p-extension H =
(V ∪ {s}, E ∪ F ) of G satisfies |F | = α(G, r). From this and Lemma 2, we
have the following theorem.
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Theorem 8 Let G = (V, E) be a graph and r : 2V → Z+ be a monotone

function on V . Any critical p-extension H = (V ∪ {s}, E ∪ F ) of G satisfies

|F | = α(G, r). 2

4.2 Edge-splitting theorems

For a graph H = (V ∪ {s}, E) and a designated vertex s /∈ V , an operation
called edge-splitting (at s) is defined as deleting two edges (s, u), (s, v) ∈ E
and adding one new edge (u, v). That is, the graph H ′ = (V ∪ {s}, (E −
{(s, u), (s, v)})∪{(u, v)}) is obtained from such edge-splitting operation. Then
we say that H ′ is obtained from H by splitting a pair of edges (s, u) and (s, v)
(or by splitting (s, u) and (s, v)). A sequence of splittings is complete if the
resulting graph H ′ does not have any neighbor of s.

Given a p-extension H = (V ∪{s}, E∪F ) of G = (V, E), a pair {(s, u), (s, v)} is
called admissible if the graph H ′ obtained from H by splitting (s, u) and (s, v)
is also a puv-extension of H ′−s = G+{(u, v)}, where puv(X) = max{0, p(X)−
1} for each set X with |{u, v}∩X| = 1 and puv(X) = p(X) otherwise. Notice
that given a graph G, if there is a complete admissible splitting at s in its
critical p-extension H = (V ∪ {s}, E ∪ F ), then the set E ′ of split edges is
an optimal solution of MECAP to G and r. Indeed, in H ′ = (V ∪ {s}, E ∪
E ′), dH′(s) = 0 holds, and every set ∅ 6= X ⊂ V satisfies 0 = dH′(s, X) ≥
max{0, R(X)−dG+E′(X)}, implying that E ′ is feasible to MECAP. Moreover,
Theorem 8 implies that |E ′| = |F |/2 = ⌈α(G, r)/2⌉, which is a lower bound
on opt(G, r) by Remark 4. However, as indicated by Lemma 6, any critical p-
extension of G with property (P) does not have a complete admissible splitting.
If

every set X ⊆ V satisfies r(X) ≥ 2 whenever r(X) > 0, (4.2)

then we can characterize a graph with property (P) as follows.

Definition 9 A p-extension H = (V ∪ {s}, E ∪ F ) of G has property (P ∗) if

H is a critical p-extension of G satisfying the following (P1∗) − (P4∗) :

(P1∗) dH(s) is even.

(P2∗) G has exactly one component C∗ ⊆ V with dH(s, C∗) = 1.
(P3∗) For the edge (s, u∗) with {(s, u∗)} = EH(s, C∗), u∗ is contained in a

proper set X ⊆ C∗ with dH(s, X) = p(X).
(P4∗) Let C1 be the family of all components C of G such that dH(C) =
dH(s, C) = 2 and C is proper. For any edge e ∈ EH(s, V −∪C∈C1

C), {(s, u∗), e}
is not admissible in H. 2

Theorem 10 Let G = (V, E) be a graph and r : 2V → Z+ be a monotone
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function satisfying (4.2). Then, G has property (P ) if and only if its critical

p-extension has property (P ∗). 2

Moreover, the following properties hold about admissible splittings.

Theorem 11 Let r : 2V → Z+ be a monotone function on V satisfying (4.2)
and H = (V ∪ {s}, E ∪ F ) be a critical p-extension of G. Then the following

(i) and (ii) hold:

(i) Some graph H ′ obtained from H by adding at most one extra edge to G and

some one extra edge incident to s to make the degree of s even (if necessary)
has a complete admissible splitting at s.
(ii) If H does not have property (P ∗), then H has a complete admissible split-

ting at s after replacing at most one edge incident to s with some new edge

incident to s, and adding some one extra edge incident to s to make the degree

of s even (if necessary). 2

We give proofs of these two theorems in Section 5. Note that Lemma 6, The-
orem 8, and Theorem 11(ii) prove the necessity of Theorem 10. Indeed, if a
critical p-extension H of G does not have property (P ∗), then by a complete
admissible splitting according to Theorem 11(ii), we can obtain a feasible so-
lution E ′ to MECAP with G and r such that |E ′| = ⌈dH(s)/2⌉ = ⌈α(G, r)/2⌉
(by Theorem 8), from which and Lemma 6 it follows that G does not have
property (P). Let us discuss its consequences. Based on these two theorems,
we give the following algorithm which delivers an optimal solution to MECAP
with G and r satisfying (4.2).

Algorithm M-AUG

Input: A graph G = (V, E) and a monotone function r : 2V → Z+ on V
satisfying (4.2).

Output: A set E∗ of new edges with |E∗| = opt(G, r) which covers p.

Step 1: Find a critical p-extension H = (V ∪ {s}, E ∪ F ) of G.

Step 2: If H does not have property (P*), then find a complete admissible
splitting at s after replacing some one edge incident to s and adding some
one edge between s and V to make the degree of s even according to Theo-
rem 11(ii). Otherwise, after adding some edge to G according to Theorem 11(i),
find a complete admissible splitting at s. Output the set E∗ of all edges added
to G as an optimal solution. 2

The details for Step 2 and the analysis of the time complexity of the algorithm
will be given in Section 5. We here only observe that the set E∗ obtained by the
algorithm is optimal. If H does not have property (P*), then as observed above,
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we have |E∗| = ⌈α(G, r)/2⌉, which is equal to a lower bound on opt(G, r) by
Remark 4. If H have property (P*), then |E∗| = ⌈α(G, r)/2⌉+ 1. Theorem 10
and Lemma 6 imply that also in this case, |E∗| is equal to a lower bound on
opt(G, r).

5 Correctness of algorithm M-AUG

In this section, we will prove the correctness of algorithm M-AUG, give a
detailed description of Step 2, and analyze the time complexity of algorithm
M-AUG. For proving the correctness of the algorithm, it suffices to prove
Theorems 10 and 11, as observed in the paragraph after the description of al-
gorithm M-AUG in the previous section. We will show these two theorems in
the following manner. After showing several preparatory properties about ad-
missible splittings, we give a constructive proof of Theorem 11 in Section 5.1,
which also proves the necessity of Theorem 10 as observed in the paragraph
immediately after Theorem 11. In Section 5.2, we prove the sufficiency of The-
orem 10, i.e., we give a proof that if a p-extension of G satisfies property (P*),
then G has property (P). In Section 5.3, we give a detailed description of Step
2 of algorithm M-AUG, according to the constructive proof of Theorem 11,
and finally analyze the time complexity of the algorithm.

Through this section, for a p-extension H of G = (V, E), let C1 be the family
of all components C of G such that dH(C) = dH(s, C) = 2 and C is proper,
and V1 = ∪C∈C1

C. Let C2 be the family of all components C of G such that
C /∈ C1 and dH(s, C) > 0, and V2 = ∪C∈C2

C.

We first show preparatory properties for proving the theorems. For seeking
admissible pairs, we need to analyze situations where some splitting fails. For
a p-extension H = (V ∪ {s}, E ∪ F ) of G = (V, E), a pair {(s, u), (s, v)} ⊆ F
of two edges is not admissible if there is a proper set Y ⊂ V with {u, v} ⊆ Y
and dH(s, Y )−p(Y ) ≤ 1 (note that the graph H ′ obtained from H by splitting
(s, u) and (s, v) satisfies dH′(s, Y ) = dH(s, Y ) − 2 ≤ p(Y ) − 1 = puv(Y ) − 1).
Also note that dH(s, Y ) ≥ 2 implies that p(Y ) ≥ dH(s, Y ) − 1 > 0. Such set
Y is called a dangerous set. Conversely, a pair {(s, u), (s, v)} is not admissible
only if there is a dangerous set Y ⊂ V with {u, v} ⊆ Y .

As a corollary of Lemma 3, we can observe that the following property holds.

Corollary 12 Let r : 2V → Z+ be a monotone set-function on V and X, Y
be proper subsets of V with p(X), p(Y ) > 0.
(i) If (a) X, Y ∈ A∗, (b) X, Y ∈ B∗, or (c) X ∈ A∗, Y ∈ B∗, and V = X ∪ Y ,

then p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X) − 2dG(X ∩ Y, V − (X ∪ Y )). In

particular, in the cases of (a) or (b), if the equality holds, then R(X − Y ) =
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r(X − Y ) and R(Y − X) = r(Y − X).
(ii) In all other cases, p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). 2

From the symmetry of p, we can observe that all neighbors of s in H cannot
be included in one dangerous set.

Lemma 13 Let p : 2V → Z+ be a symmetric function and H = (V ∪{s}, E∪
F ) be a p-extension of G = (V, E). If Y ⊂ V is dangerous, then dH(s, V −Y ) ≥
dH(s, Y ) − 1 > 0.

PROOF. Since Y is dangerous and p(Y ) = p(V − Y ), we have dH(s, Y ) ≤
p(Y )+1 = p(V −Y )+1 ≤ dH(s, V −Y )+1. From the definition of dangerous
sets, it follows that dH(s, Y ) ≥ 2. 2

The next two lemmas show properties for proper sets Y with dH(s, Y )−p(Y ) ≤
1 and p(Y ) > 0 (note that Y is not necessarily dangerous). We will be often
referred to the next Lemma 14 in the subsequent arguments, when we observe
that a dangerous set of A∗ induces a connected graph, or that a dangerous set
which does not induce a connected graph belongs to B∗.

Lemma 14 Let r : 2V → Z+ be a monotone function and H = (V ∪ {s}, E ∪
F ) be a p-extension of G = (V, E). For every set Y ⊂ V of A∗ with dH(s, Y )−
p(Y ) ≤ 1, R(Y ) ≥ 2, and p(Y ) > 0, any set ∅ 6= Y ′ ⊂ Y satisfies dG(Y ′, Y −

Y ′) ≥ R(Y ) − ⌊dH (Y )
2

⌋ (≥ 1).

PROOF. By p(Y ) > 0, dH(Y ) = dH(s, Y )+dG(Y ) ≤ R(Y )+1. By Lemma 3
(i) and Y ∈ A∗, we have dH(Y ′) = dH(s, Y ′) + dG(Y ′) ≥ R(Y ′) ≥ R(Y ).
Similarly, Y − Y ′ satisfies this property. Hence, we have dG(Y ′, Y − Y ′) =
1
2
(dH(Y ′) + dH(Y − Y ′)) −dH(Y )

2
≥ R(Y ) − dH(Y )

2
> 0 by R(Y ) ≥ 2. 2

The next lemma is often used under a situation where two crossing dangerous
cuts Y1, Y2 satisfy dH(s, Y1 ∩ Y2) > 0. We call a set Y ⊂ V with dH(s, Y ) =
p(Y ) > 0 tight (note that each tight set Y with dH(s, Y ) ≥ 2 is dangerous).

Lemma 15 Let r : 2V → Z+ be a monotone function and H = (V ∪ {s}, E ∪
F ) be a p-extension of G = (V, E). Let Y1 and Y2 be two sets with dH(s, Yi)−
p(Yi) ≤ 1 and p(Yi) > 0 for i = 1, 2, and dH(Y1∩Y2, (V ∪{s})− (Y1∪Y2)) > 0
such that Y1 and Y2 satisfy (i) Y1, Y2 ∈ A∗ or (ii) Y1, Y2 ∈ B∗. If Y1 and Y2

cross each other in H, then the following (a) − (d) hold:

(a) Y1 − Y2, Y2 − Y1 ∈ A∗.

(b) dH(s, Yi) = p(Yi) + 1 for i = 1, 2.
(c) dH(s, Yj − Yk) = p(Yj − Yk) for {j, k} = {1, 2}. In particular, if dH(s, Yj −
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Yk) > 0, Yj − Yk is tight.

(d) dH(Y1 ∩ Y2, (V ∪ {s}) − (Y1 ∪ Y2)) = 1.

PROOF. In the case of (i) (resp. (ii)), Y1−Y2, Y2−Y1 ∈ A hold by Lemma 3(i)
(resp. by Y2 −Y1 ⊆ V −Y1 ∈ A∗, Y1 −Y2 ⊆ V −Y2 ∈ A∗, and Lemma 3(i)). In
both cases, Corollary 12 implies that 2 ≥ dH(s, Y1)−p(Y1)+dH(s, Y2)−p(Y2)
≥ dH(s, Y1 − Y2)− p(Y1 − Y2) + dH(s, Y2 − Y1)− p(Y2 − Y1) +2dG(Y1 ∩ Y2, V −
(Y1 ∪Y2)) + 2dH(s, Y1 ∩Y2). Now we have dH(Y1 ∩Y2, (V ∪{s})− (Y1 ∪Y2)) =
dG(Y1 ∩Y2, V − (Y1 ∪Y2))+dH(s, Y1 ∩Y2) ≥ 1 and dH(s, Yj −Yk) ≥ p(Yj −Yk)
for {j, k} = {1, 2} by (4.1). It follows that every inequality turns out to be an
equality. Hence, dH(Y1∩Y2, (V ∪{s})−(Y1∪Y2)) = 1, dH(s, Yi)−p(Yi) = 1 for
i = 1, 2, dH(s, Y1−Y2) = p(Y1−Y2), and dH(s, Y2−Y1) = p(Y2−Y1). Moreover,
Corollary 12(i) indicates that r(Y1 − Y2) = R(Y1 − Y2), and r(Y2 − Y1) =
R(Y2 − Y1). Hence, Y1 − Y2, Y2 − Y1 ∈ A∗. 2

5.1 Proof of Theorem 11

We first define a new operation called hooking up, which is a reverse operation
of edge-splittings. We say that H ′ is obtained from H by hooking up an edge
(u, v) ∈ E(H − s) at s, if we construct H ′ by replacing an edge (u, v) with
two edges (s, u) and (s, v) in H .

For proving Theorem 11, it suffices to show the following Theorem 16 and
Lemma 17.

Theorem 16 Let r : 2V → Z+ be a monotone function satisfying (4.2) and

H = (V ∪ {s}, E ∪ F ) be a critical p-extension of G = (V, E). Assume that

there is no admissible pair in H. Then the following (i) or (ii) holds:

(i) dH(s) = 3. After adding one edge incident to s, there is a complete admis-

sible splitting.

(ii) dH(s) = 4 and G has exactly two components C1 and C2 such that

(a) dH(s, C1) = 3 and dH(s, C2) = 1, (b) every set ∅ 6= X ⊆ C1 satisfies

dH(X) ≥ 2, and (c) every set ∅ 6= X ⊆ C1 with dH(X) = 2 is a proper set of

A. 2

Lemma 17 Let H and r satisfy the assumption of Theorem 16 and dH(s) = 4,
and C1 and C2 be components in Theorem 16. Then for every edge e = (u, v)
in G[V − C1] (if exists), the graph H ′ obtained from H by hooking up the

edge e has an admissible pair {e1, e2} with e1 ∈ EH′(s, C1) = EH(s, C1) and

e2 ∈ EH′(s, V − C1). 2

Before showing these theorem and lemma, we give a proof of Theorem 11 as
its consequences.
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PROOF of Theorem 11: (i) Let H1 denote the graph from H by repeating
admissible splittings as possible, E1 denotes the set of split edges, and G1 =
(V, E ∪ E1); the p1-extension H1 of G1 has no admissible pair at s, where
p1(X) = max{0, R(X)−dG1

(X)} for every ∅ 6= X ⊂ V and p1(∅) = p1(V ) = 0.

Theorem 16 implies that dH1
(s) ∈ {0, 3, 4}. If dH1

(s) = 3, then we can add one
edge between s and V so that the resulting graph has a complete admissible
splitting at s, by Theorem 16(i). If dH1

(s) = 4, then after adding one edge
connecting two components C1 and C2 satisfying (a) and (b) in Theorem 16(ii),
we can obtain a complete admissible splitting at s (note that in the graph
H ′ resulting from adding the edge, all neighbors of s is contained in one
component in H ′−s, and hence Theorem 16 ensures the existence of a complete
admissible splitting in H ′). Thus, in any case, after adding at most one edge in
G or making the odd degree of s even, there is a complete admissible splitting
at s.

(ii) Assume that dH(s) is even, because the case of odd dH(s) has been already
seen in the above case of dH1

(s) = 3. Since at least one of (P2*)–(P4*) does
not hold, there are the following four possible cases:

(I) Every component C of G satisfies dH(s, C) 6= 1.
(II) There are at least two components C of G with dH(s, C) = 1.
(III) There is exactly one component C of G with dH(s, C) = 1 where {(s, u)}
= EH(s, C) holds. In H , {(s, u), (s, v)} is admissible for some (s, v) ∈ EH(s, V
−V1) −{(s, u)}.
(IV) There is exactly one component C of G with dH(s, C) = 1 where {(s, u)}
= EH(s, C) holds. There is no set X ⊆ C with u ∈ X and dH(s, X) = p(X).

Claim 18 In the case (IV ), there is a p-extension H ′ = (V ∪ {s}, E ∪ (F −
{(s, u)}) ∪{(s, x)}) of G such that x is a vertex in some component C ′ 6= C
of G with dH(s, C ′) > 0; H ′ belongs to the case (I).

PROOF. Let Xu ⊂ V be a tight set containing u such that no set X ′ ⊂ Xu

with u ∈ X ′ is tight (such Xu exists since H is a critical p-extension). From
Xu − C 6= ∅ and Lemma 14, we have Xu ∈ B∗.

Then Xu∩(V1∪V2−C) 6= ∅ holds since otherwise (V −V1−V2)∪C belongs to B
by Lemma 3(ii) and hence 1 = dH(s, (V −V1−V2)∪C) ≥ p((V −V1−V2)∪C) =
R((V − V1 − V2) ∪ C) ≥ 2 holds by dG((V − V1 − V2) ∪ C) = 0 and (4.2),
a contradiction. Let H1 be the graph obtained from H by replacing the edge
(s, u) with (s, x) with some x ∈ Xu ∩ (V1 ∪ V2 − C).

We claim that H1 is also a p-extension of G. Assume by contradiction that
this does not hold. Then H has a tight set X ′ ⊂ V with u ∈ X ′ ∩ Xu and
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x ∈ Xu − X ′. Note that X ′ ∈ B∗ holds since X ′ − C 6= ∅ also holds from the
assumption. We have X ′ − Xu 6= ∅ from the minimality of Xu and hence Xu

and X ′ cross each other in H . Lemma 15 implies that dH(s, Xu) = p(Xu) + 1,
contradicting that Xu is tight.

Let C ′ ⊆ V1 ∪V2 −C be the component of G with x ∈ C ′. By the assumption,
dH(s, C ′) ≥ 2 holds and hence dH1

(s, C ′) ≥ 3 holds. 2

In the case (IV), according to this claim, replace H with H ′ which belongs
to the case (I), and redenote H ′ by H . Assume by contradiction that H has
no complete splitting at s. Repeat admissible splittings as possible in H , and
again consider H1 defined as the above (i). Note that since dH(s) is even,
dH1

(s) = 4.

Then we have only to consider the cases where

G1[V − C1] contains no split edge in E1. (5.1)

Consider the cases where G1[V − C1] has a split edge e ∈ E1. The graph
H2 obtained from H1 by hooking up e has an admissible pair {e1, e2} with
e1 ∈ EH2

(s, C1) and e2 ∈ EH2
(s, V −C1) by Lemma 17. From the assumption,

the graph H3 obtained from H2 by splitting e1 and e2 has no complete splitting,
and has two components C ′

1 and C ′
2 satisfying (a) and (b) in Theorem 16. By

C1 ⊂ C ′
1, we can see that the number of split edges in H3[V − C ′

1] is less
than that in H1[V − C1]. By repeating this observation, we can assume that
G1[V − C1] contains no split edge in E1.

In the case (I), dH(s, C2) = 1 implies that G[C2] contains a split edge in E1 and
hence such H1 satisfying (5.1) does not exist; in this case, H has a complete
admissible splitting.

Consider the case (II). Let C ′, C ′′ denote components of G with dH(s, C ′) =
dH(s, C ′′) = 1. By (5.1), C ′ = C2 and C ′′ ⊆ C1 without loss of generality.
Then dH(C ′′) = 1 < 2 contradicts Theorem 16(ii)(b). Hence also in the case
(II), such H1 does not exist.

Consider the case (III). Let H ′ denote the graph obtained from splitting (s, u)
and (s, v) in H , and C ′ denote the component containing v in H . If dH′(s, C ∪
C ′) 6= 1 in the graph H ′ obtained from H by splitting (s, u) and (s, v), then
H ′ has no component C ′′ of H ′−s with dH′(s, C ′′) = 1 and belongs to the case
(I), which indicates that H ′ has a complete admissible splitting at s. Consider
the case of dH′(s, C ∪ C ′) = 1; dH(s, C ′) = 2. From the choice of (s, v), C ′ is
not proper, since if C ′ is proper, then C ′ ∈ C1 would hold. By (5.1), in H1, we
have C ′ ⊆ C1 and dH1

(C ′) = 2, contradicting Theorem 16(ii)(c). Hence also
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in this case, such H1 does not exist.

Consequently, in any case of (I)–(IV) such H1 does not exist; H has a complete
admissible splitting. 2

In the rest of this subsection, we give proofs of Theorem 16 and Lemma 17.
In [12, Proposition 5.3], it was shown that a critical extension of G which
has no admissible pair has the following property if p is a symmetric skew-
supermodular.

Theorem 19 [12] Let p : 2V → Z+ be a symmetric skew-supermodular set-

function on V , and H be a critical p-extension. If there is no admissible pair

in H, then p is {0, 1}-valued. 2

For a graph G = (V, E), every three sets X, Y, and Z satisfy the following
inequality.

dG(X) + dG(Y ) + dG(Z) ≥ dG(X − Y − Z) + dG(Y − X − Z)

+dG(Z − X − Y ) + dG(X ∩ Y ∩ Z)

+2dG(X ∩ Y ∩ Z, V − (X ∪ Y ∪ Z)).

(5.2)

PROOF of Theorem 16: Lemma 2 and Theorem 19 imply that p is {0, 1}-
valued, and hence the following claim holds (note that H is critical).

Claim 20 (i) Every set X ⊆ V satisfies dG(X) ≥ R(X)− 1. In particular, if

X is dangerous, then dG(X) = R(X) − 1 and dH(s, X) = 2.
(ii) dH(s, u) ≤ 1 holds for every u ∈ V . 2

Observe that dH(s) ≥ 3 since dH(s) = 1 would contradict the criticality of
H and dH(s) = 2 would contradict that no pair is admissible. There are the
following two possible cases: (Case-1) dH(s) = 3 and (Case-2) dH(s) ≥ 4.

(Case-1) Let u0, u1, u2 be three distinct neighbours of s in H (these vertices
exist by Claim 20 (ii)). Let H1 be the graph obtained from H by adding one
edge connecting s and u0; dH1

(s, u0) = 2. Then we claim that {(s, u0), (s, u1)}
is admissible in H1. Indeed, for any set Y containing u0 and u1 which is
dangerous in H , we have dH1

(s, Y ) = dH(s, Y )+1 = p(Y )+2, since Claim 20(i)
implies that dG(Y ) = R(Y ) − 1 and dH(s, Y ) = p(Y ) + 1. Therefore, H1 has
a complete admissible splitting at s; the statement (i) is proved.

(Case-2) Let u0, u1, u2, u3 ∈ V be four distinct neighbours of s in H . Let Yi

denote a dangerous set with {u0, ui} ⊆ Yi, i = 1, 2, 3. Note that EH(s, Yi) =
{(s, u0), (s, ui)} by Claim 20, and hence we have u1 ∈ Y1 − Y2 − Y3, u2 ∈
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Y2 − Y3 − Y1, and u3 ∈ Y3 − Y1 − Y2.

Claim 21 (i) Each Yi ∈ B∗ holds and we have dG(Y1 ∩ Y2 ∩ Y3) = 0 and

dH(s, Y1 ∩ Y2 ∩ Y3) = 1, or (ii) {Y1, Y2} ⊆ A∗ and Y3 ∈ B∗ without loss of

generality, dG(Y3 − Y1 − Y2) = 0, and R(Y1) = R(Y2) = R(Y3).

PROOF. Without loss of generality, there are the following four possible
cases:
(I) Y1, Y2, Y3 ∈ A∗.
(II) Y1, Y2, Y3 ∈ B∗.
(III) Y1 ∈ A∗, Y2, Y3 ∈ B∗.
(IV) Y1, Y2 ∈ A∗, Y3 ∈ B∗.

(I) Lemma 3(i) and Claim 20(i) imply that dG(Y1 − Y2 − Y3) ≥ R(Y1 − Y2 −
Y3) − 1 ≥ R(Y1) − 1, dG(Y2 − Y3 − Y1) ≥ R(Y2 − Y3 − Y1) − 1 ≥ R(Y2) − 1,
dG(Y3 − Y1 − Y2) ≥ R(Y3 − Y1 − Y2) − 1 ≥ R(Y3) − 1, and dG(Y1 ∩ Y2 ∩ Y3) ≥
R(Y1 ∩ Y2 ∩ Y3) − 1 ≥ R(Y1) − 1. By (5.2) and Claim 20(i), it follows that
R(Y1)−1+R(Y2)−1+R(Y3)−1 = dG(Y1)+dG(Y2)+dG(Y3) ≥ dG(Y1−Y2−Y3)+
dG(Y2−Y3−Y1)+dG(Y3−Y1−Y2) +dG(Y1∩Y2∩Y3) ≥ 2R(Y1)+R(Y2)+R(Y3)−4.
Hence R(Y1) ≤ 1, contradicting (4.2). The case (I) does not occur.

(II) By Y1 ∈ B∗, V −Y1 ∈ A∗ holds and Lemma 3(i) implies that Y2−Y3−Y1 ∈
A and dG(Y2 − Y3 − Y1) ≥ R(Y2 − Y3 − Y1)− 1 ≥ R(V − Y1)− 1 = R(Y1)− 1.
Similarly, dG(Y3−Y1−Y2) ≥ R(Y2)−1 and dG(Y1−Y2−Y3) ≥ R(Y3)−1. Again
by (5.2), it follows that

∑3
i=1(R(Yi) − 1) =

∑3
i=1 dG(Yi) ≥ dG(Y1 − Y2 − Y3) +

dG(Y2−Y3−Y1)+dG(Y3−Y1−Y2) +dG(Y1∩Y2∩Y3) ≥ R(Y1)+R(Y2)+R(Y3)−3.
Thus, every inequality turns out to be an equality, and hence dG(Y1∩Y2∩Y3) =
0. By dH(s, Y1) = 2 and u0 ∈ Y1 ∩ Y2 ∩ Y3, dH(s, Y1 ∩ Y2 ∩ Y3) = 1.

(III) Similarly to the above case, we have dG(Y1 − Y2 − Y3) ≥ R(Y1) − 1 and
dG(Y1 ∩ Y2 ∩ Y3) ≥ R(Y1) − 1 by Y1 ∈ A∗ and dG(Y3 − Y1 − Y2) ≥ R(Y2) − 1
and dG(Y2 − Y3 − Y1) ≥ R(Y3) − 1 by Y2, Y3 ∈ B∗. Again by (5.2), it follows
that

∑3
i=1(R(Yi)− 1) =

∑3
i=1 dG(Yi) ≥ dG(Y1 − Y2 − Y3) + dG(Y2 − Y3 − Y1) +

dG(Y3 − Y1 − Y2) +dG(Y1 ∩ Y2 ∩ Y3) ≥ 2R(Y1) + R(Y2) + R(Y3) − 4. Hence
R(Y1) ≤ 1, contradicting (4.2). Thus, the case (III) does not occur.

(IV) Similarly to the above cases, we can observe that dG(Y1 − Y2 − Y3) ≥
max{R(Y1), R(Y3)} −1, dG(Y2−Y3−Y1) ≥ max{R(Y2), R(Y3)} −1, and dG(Y1∩
Y2∩Y3) ≥ max{R(Y1), R(Y2)}−1. Again by (5.2), it follows that

∑3
i=1(R(Yi)−

1) =
∑3

i=1 dG(Yi) ≥ dG(Y1−Y2−Y3)+dG(Y2−Y3−Y1)+dG(Y3−Y1−Y2) +dG(Y1∩
Y2∩Y3) ≥ max{R(Y1), R(Y2)}+max{R(Y2), R(Y3)} + max{R(Y3), R(Y1)}−3.
Thus, every inequality turns out to be an equality, and hence dG(Y3−Y1−Y2) =
0 and R(Y1) = R(Y2) = R(Y3). 2

Claim 22 There is at least one dangerous set of A∗ in H.
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PROOF. Assume by contradiction that every dangerous set in H belongs to
B∗. By Claim 21, for every (s, u) ∈ EH(s, V ), there is a component Cu of G
with EH(s, Cu) = {(s, u)}. Let Y be a dangerous set and u, v be two neighbors
of s with u, v ∈ V − Y (such u, v exist because dH(s) ≥ 4 and dH(s, Y ) = 2
by Claim 20(i)). Then Y ∩ Cu 6= ∅ holds, since otherwise Y ∈ B∗ implies
that Cu ∈ A and 1 = dH(s, Cu) ≥ p(Cu) = R(Cu), contradicting (4.2). Hence
dG(Y ∪Cu) = dG(Y )−dG(Y, Cu −Y ) ≤ dG(Y )−1 = R(Y )−2 by dG(Cu) = 0
and Claim 20(i). On the other hand, by v /∈ Y ∪ Cu and Y ∈ B∗, Lemma 3
implies that R(Y ∪Cu) ≥ R(Y ). It follows that dG(Y ∪Cu) ≤ R(Y ∪Cu)− 2,
contradicting Claim 20(i). 2

Rechoose ui and Yi so that Y1 ∈ A∗. Then dH(s) = 4 holds. Indeed, if dH(s) ≥
5, then some three dangerous sets containing u0 satisfy the cases (I) or (III) in
the proof of Claim 21, in both cases of Y4 ∈ A∗ and Y4 ∈ B∗, where Y4 denotes
a dangerous set containing u0 and u4 with some neighbor u4 /∈ {u0, u1, u2, u3}
of s. According to Claim 21, let Y2 ∈ A∗ and Y3 ∈ B∗ without loss of generality.
Let Yij = V −Yk with {i, j, k} = {1, 2, 3} and i < j. Then Yij is also dangerous
because Yij is clearly proper and satisfies dH(s, Yij) = 4 − dH(s, Yk) = 2 and
dG(Yij) = dG(Yk) = R(Yk) − 1 = R(Yij) − 1. Hence, Y12 is a dangerous set of
A∗ and Y23 and Y13 are dangerous sets of B∗.

Lemma 14 implies that G[Yi] connects u0 and ui for i = 1, 2 and G[Y12]
connects u1 and u2. Hence, Y1∪Y2∪Y12 = V −(Y3−Y1−Y2) induces a connected
graph. Claim 21 implies that dG(Y3−Y1−Y2) = 0. It follows that Y1∪Y2∪Y12

is a component of G containing {u0, u1, u2}, and that Y1 ∪ Y2 ∪ Y12 and the
component of G containing u3 correspond to C1 and C2 of the statement of
this theorem, respectively.

We next show the statement (ii)(b); every set X ⊆ C1 satisfies dH(X) ≥ 2.
Let C1 = Y1 ∪ Y2 ∪ Y12. We first claim that C1 = Y1 ∪ Y2.

Claim 23 C1 = Y1 ∪ Y2.

PROOF. Assume by contradiction that Z = Y12 − Y1 − Y2 6= ∅. Now 0 =
dH(s, Z) ≥ p(Z) ≥ R(Z) − dG(Z). Thus, Lemma 3(i) and Y12 ∈ A∗ imply
that dG(Z) ≥ R(Z) ≥ R(Y12) = R(Y3). Since Y1 ∪ Y2 ∪ Y12 is a component of
G, dG(Z) = dG(Y1 ∪ Y2). By (2.1), it follows that R(Y1) − 1 + R(Y2) − 1 =
dG(Y1) + dG(Y2) ≥ dG(Y1 ∩ Y2) + dG(Y1 ∪ Y2) ≥ R(Y1 ∩ Y2) − 1 + R(Y3). Now
Lemma 3(i) indicates that R(Y1 ∩ Y2) ≥ R(Y1). Hence, R(Y2) − 1 ≥ R(Y3)
holds, contradicting that R(Y1) = R(Y2) = R(Y3) (by Claim 21(ii)). 2

For proving (ii)(b), assume by contradiction that there is a set X ⊆ C1 with
dH(X) = 1. Clearly, dH(s, X) = 0 and dG(X) = 1 since C1 induces a connected
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graph. Moreover, X is not proper since otherwise 0 = dH(s, X) ≥ p(X) ≥
R(X)− dG(X) = R(X)− 1, contradicting (4.2). Hence, X is not contained in
any of Y1 and Y2; X ∩ (Y1 − Y2) 6= ∅ 6= X ∩ (Y2 − Y1) by Claim 23. Now by
applying Lemma 15 to Y1 and Y2, both of Y1 −Y2 and Y2 −Y1 are tight sets of
A∗ (note that dH(s, Y1−Y2) = p(Y1−Y2) > 0, dH(s, Y2−Y1) = p(Y2−Y1) > 0).
Lemma 14 implies that G[Y1 − Y2] and G[Y2 − Y1] are both connected. Then
it is not difficult to see that dG(X) = 1 would contradict the connectedness of
G[Y1 − Y2] or G[Y2 − Y1].

We finally show (ii)(c); every set ∅ 6= X ⊆ C1 with dH(X) = 2 belongs to A.
Assume by contradiction that X ⊆ C1 does not belong to A. By Lemma 3(i),
X cannot be included in any of Y1 and Y2. Hence, we can assume that X ∩
(Y1 − Y2) 6= ∅ 6= X ∩ (Y2 − Y1). By dH(X) = 2 and dH(C1) ≥ 3, we have
C1 − X 6= ∅. Since G[C1] is connected, it follows that dG(X) ≥ 1, from
which dH(s, X) ≤ 1. This implies that X and Y1 cross each other in H .
From (2.2), X − Y1 ⊆ Y2, and Lemma 3, we have (R(Y1) − 1 + 2) + 2 =
dH(Y1) + dH(X) = dH(Y1 −X) + dH(X −Y1) + 2dH(X ∩Y1, (V ∪ s)−X −Y1)
≥ R(Y1 −X)+R(X −Y1)+2dH(X ∩Y1, (V ∪ s)−X −Y1) ≥ R(Y1)+R(Y2)+
2dH(X∩Y1, (V ∪s)−X−Y1) (note that dH(X ′) = dH(s, X ′)+dG(X ′) ≥ R(X ′)
holds for every X ′ ⊆ V by dH(s, X ′) ≥ p(X ′)). Now observe that R(Y2) ≥ 2
by (4.2) and that dH(X − Y1) ≥ R(Y2) = R(Y1) by Claim 21. It follows that
dH(X ∩ Y1, V ∪ {s} − X − Y1) = 0 and dH(Y1 − X) ≤ 3. Hence we have
Y1 −Y2 −X 6= ∅ 6= (Y1 ∩Y2)−X by dH(s, Y1−Y2) > 0 and dH(s, Y1∩Y2) > 0.
By these and X ∩ (Y1 − Y2) 6= ∅, Y1 − X and Y1 − Y2 cross each other in H .
From (2.2) and dH(Y1 − X) ≤ 3, it follows that dH(Y1 − Y2) + 3 ≥ dH(Y1 −
Y2)+dH(Y1−X) ≥ dH((Y1−Y2)∩X)+dH(Y1∩Y2−X)+2dH(s, Y1−Y2−X)
≥ R((Y1 −Y2)∩X)+R(Y1 ∩Y2 −X)+ 2 ≥ R(Y1 −Y2)+R(Y2)+ 2 (note that
dH(s, Y1 − Y2 −X) > 0 by dH(s, Y1 − Y2) > 0 and dH(s, X ∩ Y1) = 0 and that
R((Y1−Y2)∩X) ≥ R(Y1−Y2) and R(Y1∩Y2−X) ≥ R(Y2) by Y1−Y2, Y2 ∈ A∗).
It follows from R(Y2) ≥ 2 that dH(Y1−Y2) ≥ R(Y1−Y2)+1. Now as observed in
the above, dH(s, Y1−Y2) = p(Y1−Y2) > 0 and hence dH(Y1−Y2) = R(Y1−Y2),
a contradiction. 2

PROOF of Lemma 17: Let EH(s, C1) = {(s, u0), (s, u1), (s, u2)} and EH(s,
C2) = {(s, u3)}. From the above proof of Theorem 16, observe that there
is a dangerous set Yi ⊆ C1 with {u0, ui} ⊆ Yi for i = 1, 2. Hence, also in
the graph H1 obtained from H by hooking up the edge e, Y1 and Y2 remain
dangerous. Assume by contradiction that {(s, x), (s, u0)} is not admissible for
any x ∈ {u, v, u3} in H1; denote by Yx a dangerous set containing x and u0.
Lemma 14 implies that each Yx ∈ B∗ holds.

Claim 24 In H, (a) v /∈ Y3 and u3 /∈ Yv or (b) u /∈ Y3 and u3 /∈ Yu.
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PROOF. Note that H1 has no dangerous set containing both of u and v,
since H is a p-extension of G. Hence {u, v} − Y3 6= ∅, v /∈ Yu, and u /∈ Yv.
Without loss of generality, assume that v /∈ Y3. If u3 /∈ Yv, then we are done.

Assume that u3 ∈ Yv. If Y3 and Yv cross each other in H1, then Lemma 15 im-
plies that dH1

(s, Y3 ∩Yv) ≤ 1, contradicting that EH1
(s, Y3∩Yv) = {(s, u0), (s,

u3)}. Hence, Y3 ⊆ Yv. Now, since Yu and Yv cross each other in H1, again by
Lemma 15, we can observe that dH1

(s, Yu ∩ Yv) = 1 and hence u3 /∈ Yu ∩ Yv.
Hence, u3 /∈ Yu. Moreover, u /∈ Y3 holds by Y3 ⊆ Yv. 2

Without loss of generality, assume that v /∈ Y3 and u3 /∈ Yv. Now note that
Y3 is dangerous also in H , since even if u ∈ Y3, then dH(s, Y3) = dH1

(s, Y3) −
1 ≤ (max{0, R(Y3) − dG1

(Y3)} + 1) − 1 ≤ max{0, R(Y3) − dG(Y3)} + 1 =
p(Y3)+1, where G1 = G− (u, v). Hence, Claim 20(i) implies that EH(s, Y3) =
{(s, u0), (s, u3)}.

Claim 25 We have Yv∩{u1, u2} = ∅, dG(Yv) ≤ R(Yv), and dG(Yv−Y1−Y3) ≥
R(Yv − Y1 − Y3).

PROOF. Assume by contradiction that Yv contains u1. Then Yv is dangerous
also in H , since dH(s, Yv) = dH1

(s, Yv)−1 ≤ (max{0, R(Yv)−dG1
(Yv)}+1)−1

≤ max{0, R(Yv) − dG(Yv)} + 1. Lemma 13 implies that {u2, u3} ∩ Yv = ∅.
Then three dangerous sets Y2, Y3, and Yv satisfy the case (III) in the proof
of Claim 21, a contradiction. Similarly, u2 /∈ Yv can be seen. It follows that
2 = dH1

(s, Yv) ≤ max{0, R(Yv) − dG1
(Yv)} + 1 = R(Yv) − (dG(Yv) − 1) + 1;

dG(Yv) ≤ R(Yv). Moreover, {u0, u3} ⊆ Y3 indicates that 0 = dH(s, Yv − Y1 −
Y3) ≥ p(Yv − Y1 − Y3) ≥ R(Yv − Y1 − Y3) − dG(Yv − Y1 − Y3). 2

Note that u1 ∈ Y1 − Y3 − Yv, u3 ∈ Y3 − Yv − Y1, v ∈ Yv − Y1 − Y3, and u0 ∈
Y1∩Y3∩Yv. By Claim 20(i), Y1 ∈ A∗, and Yv ∈ B∗, we have dG(Y1−Y3−Yv) ≥
R(Y1−Y3−Yv) ≥ R(Y1)−1, dG(Y1∩Y3∩Yv) ≥ R(Y1∩Y3∩Yv) ≥ R(Y1)−1, and
dG(Y3−Yv −Y1) ≥ R(Y3−Yv −Y1)−1 ≥ R(V −Yv)−1 = R(Yv)−1. Claim 25
and Y3 ∈ B∗ imply that dG(Yv−Y1−Y3) ≥ R(Yv−Y1−Y3) ≥ R(V −Y3) = R(Y3)
and dG(Yv) ≤ R(Yv). From (5.2), it follows that R(Y1)−1+R(Y3)−1+R(Yv)
≥ dG(Y1) + dG(Y3) + dG(Yv) ≥ dG(Y1 − Y3 − Yv) + dG(Y3 − Yv − Y1) +dG(Yv −
Y1 − Y3) + dG(Y1 ∩ Y3 ∩ Yv) ≥ 2R(Y1) + R(Y3) + R(Yv) − 3. Hence R(Y1) ≤ 1
holds, contradicting (4.2). 2
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5.2 Proof of the sufficiency Theorem 10

Let r : 2V → Z+ be a monotone function on V and H be a p-extension
of G = (V, E) with property (P*). In this subsection, we prove that G has
property (P). By (P4*), for each (s, v) ∈ EH(s, V2 − C∗) there is a dangerous
set Y with {u∗, v} ⊆ Y , which will play a role as a cut YX in Definition 5 in the
subsequent arguments. Note that any proper set X with X ∩ C∗ = ∅ belongs
to A∗, since if X ∈ B∗, then C∗ ∈ A and 1 = dH(s, C∗) ≥ p(C∗) = R(C∗) ≥ 2
by (4.2) and Lemma 3, a contradiction. Hence, each C ∈ C1 satisfies C ∈ A∗.
We first show properties of such dangerous sets in Lemma 26, and show by
Lemma 27 that G has property (P).

Lemma 26 Let H be a p-extension of G = (V, E) with property (P ∗), and

(s, v) ∈ EH(s, V2 − C∗) and Yv be a dangerous set with {u∗, v} ⊆ Yv (such Yv

exists by the property (P4∗)). Then

(i) dH(s, V2 − Yv) ≥ 1 holds.

(ii) For some (s, w) ∈ EH(s, V2 − C∗) − {(s, v)}, Yv and Yw cross each other

in H, where Yw denotes a dangerous cut with {u∗, w} ⊆ Yw in H. Moreover,

v ∈ Yv − Yw and Yv ⊂ V − V1 hold and Yv − Yw is a tight set of A∗ with

Yv − Yw ⊆ V2.

(iii) Yv ∪ C∗ is a dangerous set of B∗.

PROOF. Note that Yv ∈ B∗ holds by Lemma 14 since Yv does not induce
a connected graph. Also note that dH(s, V2) ≥ 4 holds since dH(s, V2) is even
by the property (P1*) and the property that dH(s, V1) is even, and dH(s, V2 −
C∗) 6= 1 holds by the property (P2*).

(i) Assume by contradiction that dH(s, V2 − Yv) = 0 holds. Let Y ′
v be a dan-

gerous set with Yv ⊆ Y ′
v such that no Y ′′ ⊃ Y ′

v is dangerous. Note that
Y ′

v ∈ B∗ and dH(s, V2 − Y ′
v) = 0 also hold. We have p(Y ′

v) ≥ dH(s, Y ′
v) − 1 ≥

dH(s, V2) − 1 ≥ 3 holds, from which R(Y ′
v) ≥ 3. Lemma 13 and dH(s, Y ′

v) ≥ 4
imply that dH(s, V − Y ′

v) ≥ 3. It follows that there exist at least two sets
C1, C2 ∈ C1 with dH(s, Ci − Y ′

v) > 0 for i = 1, 2. We have C1 ∩ Y ′
v 6= ∅,

since otherwise C1 ⊆ V − Y ′
v ∈ A∗ and Lemma 3(i) imply that 2 = R(C1) ≥

R(V − Y ′
v) = R(Y ′

v) ≥ 3, a contradiction. Now by C1 ∈ A∗, every ∅ 6= X ⊆ C1

satisfies dH(X) = dH(s, X) + dG(X) ≥ R(X) ≥ R(C1) ≥ 2. This indicates
that dH(Y ′

v) = dH(Y ′
v ∩C1) + dH(Y ′

v −C1) ≥ 2 + dH(Y ′
v −C1) = dH(Y ′

v ∪C1).
It follows from Lemma 3(ii) and dH(s, C2 − Y ′

v) > 0 that Y ′
v ∪ C1 ∈ B

and R(Y ′
v) ≤ R(Y ′

v ∪ C1). This indicates that Y ′
v ∪ C1 is also dangerous by

dH(Y ′
v ∪ C1) ≤ dH(Y ′

v) ≤ R(Y ′
v) + 1 ≤ R(Y ′

v ∪ C1) + 1. This contradicts the
maximality of Y ′

v .
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(ii) Let Y ′
v be a dangerous set with {u∗, v} ⊆ Y ′

v and Yv ⊆ Y ′
v such that no

Y ′′ ⊃ Y ′
v is dangerous in H . By (i), dH(s, V2−Y ′

v) > 0 holds. Let w ∈ V2−Y ′
v be

a vertex with dH(s, w) > 0 and Yw be a dangerous set with {u∗, w} ⊆ Yw. Then
Y ′

v and Yw cross each other in H since we have u∗ ∈ Y ′
v ∩Yw, w ∈ Yw −Y ′

v , and
Y ′

v − Yw 6= ∅ by the maximality of Y ′
v . Note that Yw ∈ B∗. Lemma 15 implies

that dH(s, Y ′
v ∩ Yw) = 1, and it follows from u∗ ∈ Y ′

v ∩ Yw that v ∈ Yv − Yw.
Hence, Yv and Yw also cross each other in H .

Again by Lemma 15, we have p(Yv − Yw) = dH(s, Yv − Yw) > 0, and hence
Yv−Yw is a tight set of A∗ and Lemma 14 implies that G[Yv−Yw] is connected;
Yv − Yw ⊆ V2. Similarly, G[Yw − Yv] is connected. Finally, we prove that
Yv ∩Yw ∩V1 = ∅ in order to show that Yv ⊂ V −V1 (note that V −V1 −Yv 6= ∅
holds by dH(s, V2 − Yv) > 0). Assume by contradiction that Yv ∩ Yw ∩ C 6= ∅
holds for some C ∈ C1. From dH(s, V2 − Yv) > 0, dH(s, V2 − Yw) > 0, and
the similar arguments in the above (i), it is not difficult to see that Yv ∪ C
and Yw ∪ C are both dangerous sets of B∗ and cross each other in H . Then
dH(s, (Yv ∩ Yw) ∪ C) ≥ 3 would contradict Lemma 15.

(iii) Let Y ′′
v = Yv ∪ C∗. By (i) and u∗ ∈ Yv, we have dH(s, V − Y ′′

v ) ≥ 1.
Hence V −Y ′′

v 6= ∅ and Lemma 3(ii) imply that Y ′′
v belongs to B and R(Y ′′

v ) ≥
R(Yv). By EH(s, C∗) ⊆ EH(s, Yv) and dH(s, C∗) = dH(C∗), we have dH(Y ′′

v ) ≤
dH(Yv). Hence dH(Y ′′

v ) ≤ dH(Yv) ≤ R(Yv)+1 ≤ R(Y ′′
v )+1. Moreover, Y ′′

v /∈ A∗

by Lemma 14 and it follows that Y ′′
v ∈ B∗, which proves the lemma. 2

Lemma 27 If H = (V ∪ {s}, E ∪ F ) is a p-extension of G = (V, E) with

property (P ∗), then G has property (P ).

PROOF. Lemma 26 implies that for each v ∈ V [F ]− V1 − {s, u∗}, there are
two proper sets Xv ⊂ V − V1 and Yv ⊂ V − V1 with v ∈ Xv ⊆ Yv satisfying
the following (a) and (b).

(a) Xv is a tight set of A∗, and no set ∅ 6= X ′ ⊂ Xv with v ∈ X ′ satisfies this
property.

(b) Yv satisfies u∗ ∈ Yv and C∗ ⊆ Yv ⊂ V − V1 (by (ii)(iii) in Lemma 26) and
is a dangerous set of B∗.

Let Xu∗ be a tight set with u∗ ∈ Xu∗ ⊆ C∗ such that no set X ′ ⊂ Xu∗ satisfies
this property (such Xu∗ exists from the property (P3*)). Let X be the family
of all sets Xv, v ∈ V [F ] − {s} − V1 such that ∪X∈XX ⊇ V [F ] − {s} − V1 and
Xv ∈ X does not satisfy Xv ⊂ X for any X ∈ X , and Y be the family of the
corresponding Yv. We will show that α(G, r) is even, implying (P1), and the
family X ∪ C1 is a subpartition of V satisfying

∑

X∈X∪C1
p(X) = α(G, r) and

(P2) and (P3), which proves the lemma.
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We claim that

X is a subpartition of V − V1. (5.3)

Assume by contradiction that there are two sets Xu, Xv ∈ X which cross each
other in H . By Xu, Xv ∈ A∗ and Corollary 12, we have 0 ≥ dH(s, Xu) −
p(Xu) + dH(s, Xv) − p(Xv) ≥ dH(s, Xu − Xv) − p(Xu − Xv) + dH(s, Xv −
Xu) − p(Xv − Xu) +2dG(Xu ∩ Xv, V − Xu − Xv) +2dH(s, Xu ∩ Xv) ≥ 0. It
follows that dH(s, Xu −Xv) = p(Xu −Xv), dH(s, Xv −Xu) = p(Xv −Xu), and
dH(Xu ∩Xv, (V ∪{s})−Xu −Xv) = 0. Hence u ∈ Xu −Xv and p(Xu −Xv) =
dH(s, Xu − Xv) > 0. Now Xu − Xv ∈ A holds by Lemma 3(i). As mentioned
in the first paragraph of this subsection, every proper set disjoint with C∗

belongs to A∗, and hence it follows that Xu −Xv ∈ A∗. Thus, Xu −Xv is also
tight of A∗, contradicting the minimality of Xu.

Now each C ∈ C1 is tight since 2 = dH(s, C) ≥ p(C) = R(C) ≥ 2 holds by
(4.2). Hence, by (5.3), X ∪C1 is a subpartition of V and a family of tight sets
such that V [F ]− {s} ⊆ ∪X∈X∪C1

X. Since |F | = α(G, r) holds by Theorem 8,
∑

X∈X∪C1
p(X) = dH(s, V ) = |F | = α(G, r). Since |F | is even, α(G, r) is even.

Moreover, X ∪ C1 is a subpartition of V satisfying (P2) by taking X∗ = Xu∗ .
Now for every dangerous set Y ∈ Y which does not cross with any X ∈ X in
H , we have

∑

X′∈X ,X′⊆Y p(X ′) =
∑

X′∈X ,X′⊆Y dH(s, X ′) = dH(s, Y ) ≤ p(Y )+1.
Moreover, note that each Y ∈ Y satisfies V − V1 − Y 6= ∅ by V2 − Y 6= ∅.
Therefore, by regarding C1 as X1 in Definition 5, in order to show that X ∪C1

satisfies (P3), it suffices to prove that for any Xu ∈ X with u 6= u∗, there is a
set Yw ∈ Y with Xu ⊆ Yw such that for any set X ∈ X , Yw and X do not cross
each other in H (note that each Y ∈ Y satisfies C ∩ Y = ∅ for any C ∈ C1 by
Y ⊂ V − V1). For this, we show that

if there is a set Yu ∈ Y which crosses with

some Xv ∈ X in H , v 6= u∗ and Yu ⊆ Yv.
(5.4)

Since each Y ∈ Y satisfies Xu∗ ⊆ C∗ ⊆ Y , v 6= u∗ holds. Assume by contra-
diction that Yu − Yv 6= ∅. By Xv − Yu 6= ∅ 6= Xv ∩ Yu, Yu and Yv cross each
other in H . From Lemma 15, it follows that Yv − Yu ∈ A∗, dH(s, Yv − Yu) =
p(Yv − Yu), and dH(s, u∗) = dH(Yu ∩ Yv, V ∪ {s} − Yu − Yv) = 1. Hence we
have v ∈ Xv − Yu, from which Xv ∩ (Yv − Yu) 6= ∅ holds and Yv − Yu is tight.
Note that Xv − (Yv − Yu) 6= ∅ holds since Xv and Yu cross each other in H .
Moreover, (Yv −Yu)−Xv 6= ∅ holds since if Yv −Yu ⊆ Xv holds, then the tight
set Yv −Yu contradicts the minimality of Xv. This means that Xv and Yv −Yu

cross each other in H . Now dH(Xv ∩ (Yv − Yu), V ∪ {s}−Xv − (Yv − Yu)) > 0
holds by v ∈ Xv − Yu. By applying Lemma 15 to Xv and Yv − Yu, we have
dH(s, Xv) = p(Xv)+1, contradicting that Xv is tight (note that Xv and Yv−Yu
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are both tight sets of A∗). Hence (5.4) holds. 2

5.3 Step 2

According to the proof of Theorems 11, Step 2 of algorithm M-AUG is de-
scribed as follows.

Step 2: (1) Check whether H has property (P*).

(2) The case where H has property (P*): Repeat admissible splittings
as possible. In the resulting graph, after adding one edge between C1 and
C2 according to the case of dH1

(s) = 4 in the proof of Theorem 11(i), find
a complete admissible splitting (note that dH(s) is even from the property
(P1*)). Halt after outputting the set E∗ of all edges added to G as an optimal
solution, where |E∗| = ⌈α(G, r)/2⌉ + 1.

(3) The case where H does not have property (P*):

(3-1) If dH(s) is odd, then according to the proof of Theorem 11(i), find a
complete admissible splitting by adding one edge incident to s and halt after
outputting the set E∗ of all edges added to G as an optimal solution, where
|E∗| = ⌈α(G, r)/2⌉.

(3-2) Otherwise one of the cases (I)–(IV) in the proof of Theorem 11(ii) hold.
In the case of (IV), we replace one edge incident to s so that the resulting
graph belongs to the case (I), according to Claim 18. In the case of (III), first
split the edges (s, u) and (s, v) in H .

After that, in all cases repeat admissible splittings as possible. If the resulting
graph H1 still has an edge incident to s, then according to the statements
immediately after (5.1), find a complete admissible splitting while hooking up
some edges in H1[V −C1] and resplitting (note that the proof of Theorem 11(ii)
implies that H1[V − C1] has a split edge and that hooking up and resplitting
operations can find a complete admissible splitting). Halt after outputting the
set E∗ of all edges added to G, where |E∗| = ⌈α(G, r)/2⌉. 2

Finally we show that algorithm M-AUG can be implemented to run in O(n4(m
+n log n + q)) time. In the following arguments about the time complexity of
the algorithm, we regard k multiple edges in a graph as a single edge with ca-
pacity k; an addition/deletion of ℓ multiple edges means the increase/decrease
of the capacity on the corresponding single edge by ℓ.

Note that H satisfies (4.1) if and only if min∅6=X⊂V,X∈A∪B{ dH(X)−R(X)} ≥ 0.
We can prove the following lemma by using the family of all extreme sets
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[10,11], where in G, a set ∅ 6= X ⊂ V is called extreme if any ∅ 6= X ′ ⊂ X
satisfies dG(X ′) > dG(X).

Lemma 28 It can be checked in O(n2(m + n log n + q)) time whether a given

H satisfies (4.1) or not. Moreover, if H violates (4.1), then min∅6=X⊂V,X∈A∪B{
dH(X) − R(X)} can be obtained in the same time.

PROOF. Let Z(H) denote the family of all extreme sets in H . It is known
that Z(H) is laminar and hence |Z(H)| = O(n(H)) holds. It was shown in
[10,11] that Z(H) can be found in O(m(H)n(H)+n(H)2 log n(H)) time. Note
that m(H) ≤ m(G) + n(G) and n(H) = n(G) + 1.

Let H(v) denote the graph obtained from H by adding max{r(u) | u ∈ V }
multiple edges to EH(s, v) for a vertex v ∈ V , and Zs(H(v)) denote the
family of extreme sets X ∈ Z(H(v)) in H(v) with s ∈ X. For a given H ,
let g(H) = min{0, min{dH(X) − R(X) | X ∈ Z(H), s /∈ X}, min{dH(X) −
R(X − s) | X ∈ Zs(H(v)), v ∈ V }}. Note that given Z(H) and Zs(H(v)),
v ∈ V , we obtain g(H) by computing dH(X) − R(X) or dH(X) − R(X − s)
O(n2) times; O(n2) times computation of r suffices. For proving this lemma,
we will show that H satisfies (4.1) if and only if g(H) = 0, and that if H
violates (4.1), then min∅6=X⊂V,X∈A∪B{dH(X) − R(X)} = g(H) < 0 (note that
g(H) ≤ 0 holds from the definition).

For this, we first show by Claims 29 and 30 that min∅6=X⊂V,X∈A∪B{dH(X)
−R(X)} ≥ g(H).

Claim 29 Every proper set X ⊂ V of A satisfies dH(X)− r(X) ≥ dH(X ′)−
r(X ′) for some X ′ ∈ Z(H) with X ′ ⊆ X.

PROOF. From the definition of extreme sets, there is an extreme set Y ∈
Z(H) with Y ⊆ X and dH(Y ) ≤ dH(X). By the monotonicity of r, r(Y ) ≥
r(X). Hence, dH(X) − r(X) ≥ dH(Y ) − r(Y ). 2

Claim 30 Assume that min{dH(X) − r(V − X) | X ∈ B} < 0. Then, every

proper set X ⊂ V of B satisfies (a) dH(X)− r(V − X) ≥ dH(X ′) − r(X ′) for

some X ′ ∈ Z(H) with X ′ ⊆ V − X or (b) dH(X) − r(V − X) ≥ dH(X ′) −
r(X ′ − s) for some X ′ ∈ Zs(H(v)) and v ∈ V .

PROOF. Let X ⊂ V be a proper set of B such that dH(X) − r(V − X) =
min{dH(X ′) − r(V − X ′) | X ′ ∈ B} and any set V 6= X ′′ ⊃ X satisfies
dH(X ′′)−r(V −X ′′) > dH(X)−r(V −X) (note that each V 6= X ′′ ⊃ X belongs
to B). Let X = V −X. Note that X ∈ A. By dH(X) = dH(X ∪ {s}), we have

26



dH(X)−r(V −X) = dH(X∪{s})−r(X) = min{dH(X ′∪{s})−r(X ′) | X ′ ∈ A},
and any set ∅ 6= X ′′ ⊂ X satisfies dH(X ′′∪{s})−r(X ′′) > dH(X∪{s})−r(X).

First we consider the case where some ∅ 6= X ′ ⊂ X satisfies dH(X ′) ≤
dH(X ∪ {s}). Since X ∈ A, we have X ′ ∈ A and hence r(X ′) ≥ r(X) by
the monotonicity of r. It follows that dH(X ∪ {s})− r(X) ≥ dH(X ′)− r(X ′).
Claim 29 implies that dH(X ′) − r(X ′) ≥ dH(Y ) − r(Y ) for some Y ∈ Z(H)
with Y ⊆ X ′.

Next consider the case where some ∅ 6= X ′ ⊂ X satisfies dH(X ′ ∪ {s}) ≤
dH(X∪{s}). Similarly to the above, r(X ′) ≥ r(X). Hence, dH(X∪{s})−r(X)
≥ dH(X ′ ∪ {s}) − r(X ′), contradicting the minimality of X.

Finally, we consider the case where every ∅ 6= X ′ ⊂ X satisfies dH(X ′) >
dH(X ∪ {s}) and dH(X ′ ∪ {s}) > dH(X ∪ {s}). Let u ∈ X (note that X 6= ∅).
We can observe that X∪{s} ∈ Zs(H(u)) or dH(X) = dH(X∪{s}) ≥ r(V −X).
Indeed, if dH(u)(s) > dH(X ∪ {s}) = dH(u)(X ∪ {s}), then every set X ′ ⊂
X∪{s} satisfies dH(u)(X

′) > dH(u)(X∪{s}), and otherwise then dH(X∪{s}) ≥
max{r(w) | w ∈ V } ≥ r(V − X) (note that from the monotonicity of r,
max{r(X) | X ⊆ V } = max{r(v) | v ∈ V }). 2

Clearly, if g(H) = 0, H satisfies (4.1). Consider the case of g(H) < 0. Here, we
claim that min∅6=X⊂V,X∈A∪B{dH(X)−R(X)} = g(H). As observed in Claims 29
and 30, we have min∅6=X⊂V,X∈A∪B{dH(X) −R(X)} ≥ g(H). Notice that for
each set X ⊆ V with X /∈ A∪B, we have R(X) = R(V −X) = 0 and dH(X)−
R(X) = dH(V ∪{s}−X)−R(V −X) ≥ 0. Hence, if dH(X)−R(X) = g(H) < 0
holds for some X ∈ Z(H) with s /∈ X, then X ∈ A∪B. If dH(X)−R(X−s) =
g(H) < 0 for some X ∈ Zs(H)(v) with v ∈ V , then dH(X) − R(X − s) =
dH(V − X) − R(V − X) < 0 holds by s ∈ X and hence V − X belongs to
A ∪ B. Thus, we have min∅6=X⊂V,X∈A∪B{dH(X) − R(X)} ≤ g(H). Therefore,
we have min∅6=X⊂V,X∈A∪B{dH(X)−R(X)} = g(H). Thus, we can observe that
if g(H) < 0, then H violates (4.1) and min∅6=X⊂V,X∈A∪B{dH(X) − R(X)} is
also obtained. 2

It suffices to show that the following (A) (resp. (B)) can be done by computing
min∅6=X⊂V,X∈A∪B{dH(X) − R(X)} at most n times (resp. once):

(A) The computation of a critical p-extension of a given G.

(B) The computation of how many pairs of {(s, u), (s, v)} are admissible for a
given pair {u, v} ⊆ V of two vertices in a p-extension H of G.

Indeed, Step 2(1) can be done by the computation (B) for O(n) pairs, a se-
quence of greedy admissible splittings in Step 2(2)(3) can be done by the
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computation (B) for O(n2) pairs, and the hooking up operations in Step 2(3-
2) are executed at most n times (since the statements immediately after (5.1)
indicates that one hooking up decreases |V − C1| at least by one).

(A) A critical p-extension of G can be obtained as follows. First we add
max{r(v) | v ∈ V } edges between s and each v ∈ V . From the monotonicity
of r, max{r(X) | X ⊆ V } = max{r(v) | v ∈ V }, and hence the resulting
graph H ′ is a p-extension of G. After that, for each v ∈ V , after deleting all
edges between s and v, we check whether the resulting graph H ′′ satisfies (4.1)
or not. If not, we add −min∅6=X⊂V,X∈A∪B{dH′′(X) − R(X)} edges between s
and v in H ′′. Thus, a critical p-extension of G can be found by computing
min∅6=X⊂V,X∈A∪B{dH(X) − R(X)} for some H at most n times.

(B) Given a p-extension H of G, we can check how many pairs of {(s, u), (s, v)}
can be split as follows. This can be done by checking whether the result-
ing graph H ′ satisfies (4.1) or not after splitting min{dH(s, u), dH(s, v)} pairs
{(s, u), (s, v)}. If (4.1) is violated, we have only to hook up ⌈−1

2
min∅6=X⊂V,X∈A∪B

{dH′(X) − R(X)}⌉ pairs in H ′.

6 Concluding Remarks

In this paper, given a graph G = (V, E) and a monotone function r : 2V → Z+,
we considered the problem of asking to augment G by adding a smallest num-
ber of new edges F such that the resulting graph G + F satisfies dG+F (X) ≥
r(X) for every ∅ 6= X ⊂ V . We have shown that the problem can be solved
in O(n4(m + n log n + q)) time under the assumption that r(X) ≥ 2 holds for
every X ⊆ V whenever r(X) > 0. It is a future work to consider RECAP with
a more general R, such as one including both of LECAP and NAECAP.
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